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1. Stress and Strain

Theory at a Glance (for IES, GATE, PSU)
1.1 Stress (0)

When a material is subjected to an external force, a resisting force is set up within the component. The
internal resistanceforce per unit area acting on a material or intensity of the forces distributed over a given

section is called the stress at a point.

® [t uses original cross section area of the specimen and also known as engineering stress or

conventional stress.

Therefore, 0 = —

® P is expressed in Newton(N) and A, original area,in square meters (m2), the stress o will be

expresses in N/ m2. This unit is called Pascal (Pa).

® As Pascal is a small quantity, in practice, multiples of this unit is used.

1 kPa =103 Pa = 103 N/ m? (kPa = Kilo Pascal)
1 MPa =108 Pa= 105N/ m2 =1 N/mm2 (MPa = Mega Pascal)
1 GPa =10%Pa =10% N/ m? (GPa = Giga Pascal)

Let us take an example: A rod 10 mm X10 mm cross-section is carrying an axial tensile load 10 kN. In
this rod the tensile stress developed is given by

3
( /)zﬁz WAV _1010 W _400Njmme = 100MPa
A (10/77/77><10/77/77) 100 /7m

® The resultant of the internal forces for an axially loaded member is

normal to a section cut perpendicular to the member axis.

® The force intensity on the shown section is defined as the normal stress.

. AF
o= lim — and o, =—
AA-0 AA a9 A

® Stresses are not vectors because they do not follow vector laws of
addition. They are Tensors.Stress, Strain and Moment of Inertia are
second order tensors.

® Tensile stress (oy) II‘_1/— ii p

If 0 > 0 the stress is tensile. 1.e. The fibres of the component

tend to elongate due to the external force. A member F, % i s

subjected to an external force tensile P and tensile stress

distribution due to the force is shown in the given figure.
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Chapter-1 Stress and Strain S K Mondal’s
e Compressive stress (o.) l
If 0 < 0 the stress is compressive. i.e. The fibres of the
component tend to shorten due to the external force. A
member subjected to an external compressive force P and

compressive stress distribution due to the force is shown in

the given figure. T

® Shear stress (7)

When forces are transmitted from one part of a body to other, the stresses

developed in a plane parallel to the applied force are the shear stress. Shear

stress acts parallel to plane of interest. Forces P is applied

transversely to the member AB as shown. The corresponding

internal forces act in the plane of section C and are called shearing l I

T) P i 2

forces. The corresponding average shear stress ( = A
rea

1.2 Strain (g)

Thedisplacement per unit length (dimensionless) is

known as strain.

o e

® Tensile strain (€ ¢)

=
[=]

The elongation per unit length as shown in the

figure is known as tensile strain. L1

s ]
et = AL/ Lo 7
. o . . /] ——» P
It is engineering strain or conventional strain. i
Here we divide the elongation to original length ‘;
not actual length (Lo + A L) L=Lo + AL

Sometimes strain is expressed in microstrain. (1 pstrain = 10-6) eg. a strain of 0.001 = 1000 pstrain)

Let us take an example: A rod 100 mm in original length. When we apply an axial tensile load 10 kN the

final length of the rod after application of the load is 100.1 mm. So in this rod tensile strain is developed

and is given by

(5t>:£: L—L, 100.tmm—100mm _ 0.1mm
L, L, 100mm 100mm

= 0.001 (Dimensionless) Tensile

e Compressive strain (<)

If the applied force is compressive then the reduction of length per unit length is known as
compressive strain. It is negative. Then ¢, = (-AL)/ L,
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Chapter-1 Stress and Strain S K Mondal’s

® Shear Strain (7Y):When a

force P is applied tangentially to
the element shown. Its edge

displaced to dotted line. Where

O is the lateral displacement of
the upper face

of the element relative to the lower face and L is the distance between these faces.

6
Then the shear strain is ("y ) = —

1.3 True stress and True Strain

The true stress is defined as the ratio of the load to the cross section area at any instant.

Where O and € is the engineering stress and engineering strain respectively.

® True strain

or engineering strain (€ ) =e7 -1
The volume of the specimen is assumed to be constant during plastic deformation. [
AL, =AL]ltis valid till the neck formation.
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Chapter-1 Stress and Strain S K Mondal’s

e Comparison of engineering and the true stress-strain curves shown below

® The true stress-strain curve is also known as Frue SIoss - siram curve
the flow curve.

— i
e e =

\‘

® True stress-strain curve gives a true indication
of deformation characteristics because it is .
based on the instantaneous dimension of Y
the specimen.

Correcred for
neckng

Engneeang

SWOSE=SINn uw

® In engineering stress-strain curve, stress drops
down after necking since it is based on the
original area.

® Max { oad

R Frochire

0 Strom

® In true stress-strain curve, the stress however increases after necking since the cross-
sectional area of the specimen decreases rapidly after necking.

® The flow curve of many metals in the region of uniform plastic deformation can be expressed by
the simple power law.
or = K(em)» Where K is the strength coefficient
n is the strain hardening exponent
n = 0 perfectly plastic solid
n = 1 elastic solid

For most metals, 0.1<n<0.5

e Relation between the ultimate tensile strength and true stress at maximum load

. . L, :
The ultimate tensile strength (au) == < A, — P
o]

P — A =>

The true stress at maximum load (ou) = o =
T A
A N
And true strain at maximum load (s)T =In [7"] or 70 =er
L. P P

Eliminating Pmax we get , (ou) =& - M x_0—ge7

T A A A

[
Where Pmax = maximum force and A, = Original cross section area

A = Instantaneous cross section area

Let us take two examples: L,

(1) Only elongation no neck formation = A, == 4

In the tension test of a rod shown initially it was Ao < | A =

= 50 mm?2 and L, = 100 mm. After the application of E

load it’s A = 40 mm?2 and L = 125 mm.

Determine the true strain using changes in both

length and area.

Answer: First of all we have to check that does the (If no neck formation
member forms neck or not? For that check AL =AL occurs both area and
o T gauge length can be used
Here 50 x 100 = 40 x 125 so no neck formation is for a strain calculation.)

there. Therefore true strain
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Chapter-1 Stress and Strain S K Mondal’s

1.4 Hook’s law
According to Hook’s law the stress is directly proportional to strain i.e. normal stress (0) & normal strain
(¢) and shearing stress (7 ) « shearing strain ().
o0=Ee and7 =Gy
The co-efficient E is called the modulus of elasticity i.e. its resistance to elastic strain. The co-efficient G is

called the shearmodulus of elasticity or modulus of rigidity.

1.6 Young’s modulus or Modulus of elasticity (E) = %:g
S
1.7 Modulus of rigidity or Shear modulus of elasticity (G) =£==j—§
v
. _ Ap Ap
1.8 Bulk Modulus or Volume modulus of elasticity (K) = " AR
v R

1.10 Relationship between the elastic constants E, G, K, p
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Chapter-1 Stress and Strain S K Mondal’s

[VIMP]

Where K = Bulk Modulus, p = Poisson’s Ratio, E= Young’s modulus, G= Modulus of rigidity

® For a linearly elastic, isotropic and homogeneous material, the number of elastic constants required

to relate stress and strain is two. i.e. any two of the four must be known.

® If the material is non-isotropic (i.e. anisotropic), then the elastic modulii will vary with additional
stresses appearing since there is a coupling between shear stresses and normal stresses for an

anisotropic material.There are 21 independent elastic constants for anisotropic materials.

® [f there are axes of symmetry in 3 perpendicular directions, material is called

orthotropicmaterials. An orthotropic material has 9 independent elastic constants.

1.11 Poisson’s Ratio (p)

Initial shape
it
P e
e — L

(Under unidirectional stress in x-direction)

® The theory of isotropic elasticity allows Poisson's ratios in the range from -1 to 1/2.

® We use cork in a bottle as the cork easily inserted and removed, yet it also withstand the pressure

from within the bottle. Cork with a Poisson's ratio of nearly zero, is ideal in this application.

® If a piece of material neither expands nor contracts in volume when subjected to stress,then the

Poisson’s ratio must be 1/2

® Poisson's ratio in various materials

Steel 0.25 -0.33 Rubber 0.48-0.5
ClI 0.23 - 0.27 Cork Nearly zero
Concrete 0.2 Novel foam negative

1.12 For bi-axial stretching of sheet

Lfl ..
=In L, —Original length

ol

L, ,
€,=ln| — L ,-Final length

02
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Chapter-1 Stress and Strain S K Mondal’s
Initial thickness(t,)

el xe™

Final thickness (t;) =

1.13 Elongation

e A prismatic bar loaded in tension by an axial force P

For a prismatic bar loaded in tension by
an axial force P. The elongation of the bar
can be determined as

-‘.—L—:--_—__q

e FElongation of composite body

Elongation of a bar of varying cross section A1, Ag,......... Anof lengths 1, Is.......Ixrespectively.
Pl L I [
5 = — |:_1 + 2 + 3 __ + _n:|
E| 4 4, 4 A,
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Chapter-1 Stress and Strain S K Mondal’s

e FElongation of a tapered body
Elongation of a tapering rod of length ‘L.’ due to load ‘P’ at the end

(d1 and d2 are the diameters of smaller & larger ends)

You may remember this in this way, 8= ie.

For-2020 (IES,GATE, PSUs) Page 10 of 493 Rev.0



Chapter-1 Stress and Strain S K Mondal’s

e FElongation of a body due to its self weight

(i) Elongation of a uniform rod of length ‘L.’ due to its own weight ‘W’

The deformation of a bar under its own weight as compared to that when subjected to a
direct axial load equal to its own weight will be half.

(i1) Total extension produced in rod of length ‘L’ due to its own weight ‘w’ per with

length o= ol
ength. =
2EA
(ii1) Elongation of a conical bar due to its self weight
s pgl’ WL
6E 24, E

1.14 Structural members or machines must be designed such that the working stresses are less than the

ultimate strength of the material.
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Chapter-1 Stress and Strain S K Mondal’s

Working stress(o,, ) = % n=1.5to 2

factor of safety
St n,=2to3
n1
_% o, =Proof stress
n

o, 0r o, or o
1.15 Factor of Safety: (n) = — P ult

g

w

1.16 Thermal or Temperature stress and strain

® When a material undergoes a change in temperature, it either elongates or contracts depending

upon whether temperature is increased or decreased of the material.

® If the elongation or contraction is not restricted, i. e. free then the material does not experience

any stress despite the fact that it undergoes a strain.

® The strain due to temperature change is called thermal strain and is expressed as,

® Where a is co-efficient of thermal expansion, a material property, and AT is the change in

temperature.

® The free expansion or contraction of materials, when restrained induces stress in the material

and it is referred to as thermal stress.

_ Where, E = Modulus of elasticity

® Thermal stress produces the same effect in the material similar to that of mechanical stress. A
compressive stress will produce in the material with increase in temperature and the stress

developed is tensile stress with decrease in temperature.

PZT7 27T
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Chapter-1 Stress and Strain S K Mondal’s

1.17 Thermal stress on Brass and Mild steel combination

A brass rod placed within a steel tube of exactly same length. The assembly is making in such a
way that elongation of the combination will be same. To calculate the stress induced in the brass

rod, steel tube when the combination is raised by t°C then the following analogy have to do.

(a) Original bar before heating.

(b) Expanded position if the members are allowed to

expand freely and independently after heating.

(¢) Expanded position of the compound bar i.e. final

position after heating.

® Compatibility Equation: Assumption:

§=6,+8,=5,-5,
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Chapter-1 Stress and Strain S K Mondal’s
® Equilibrium Equation: l.L=L =L,
O-s As = O-BAB 2' ab > aS
3. Steel —Tension

Brass — Compression
Where, § = Expansion of the compound bar = AD in the above figure.
o, = Free expansion of the steel tube due to temperature rise t°C = ¢ Lt
= AB in the above figure.
o, = Expansion of the steel tube due to internal force developed by the unequal expansion.
= BD in the above figure.
Oy = Free expansion of the brass rod due to temperature rise t°C = ¢, L t
= AC in the above figure.
05 = Compression of the brass rod due to internal force developed by the unequal expansion.

= BD in the above figure.
And in the equilibrium equation
Tensile force in the steel tube = Compressive force in the brass rod

Where, o, = Tensile stress developed in the steel tube.
o, = Compressive stress developed in the brass rod.
A = Cross section area of the steel tube.

Az = Cross section area of the brass rod.

Let us take an example: See the Conventional Question Answer section of this chapter and the question

is “Conventional Question IES-2008” and it’s answer.

1.18 Maximum stress and elongation due to rotation

2,2 2,3 X
) 0,0 = 22L ana (o1)=L2EL 4
8 12E .

212 213 ¥
i) 0, = P2L ana (51)= 2oL T
2 3E

— |
.

For remember: You will get (ii) by multiplying by 4 of (i)

1.18 Creep

When a member is subjected to a constant load over a long period of time it undergoes a slow permanent
deformation and this is termed as “creep”. This is dependent on temperature. Usually at elevated

temperatures creep is high.

® The materials have its own different melting point; each will creep when the homologous

Testing temperature S

temperature > 0.5. Homologous temp = -
Melting temperature

0.5
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Chapter-1 Stress and Strain S K Mondal’s

A typical creep curve shows three distinct stages

with different creep rates. After an initial rapid P PR
elongation e€,, the creep rate decrease with time e .
. . [ |
until reaching the steady state. | |

1) Primary creep is a period of transient creep.
The creep resistance of the material increases

due to material deformation. :
) The constant creep rate in the
| second step represent the creep

2) Secondary creepprovides a nearly constant o rate of the material.

creep rate. The average value of the creep rate _l

Time
during this period is called the minimum creep

rate. A stage of balance between competing.

Strain hardening and recovery (softening) of the material.

3) Tertiary creep shows a rapid increase in the creep rate due to effectively reduced cross-sectional area
of the specimen leading to creep rupture or failure. In this stage intergranular cracking and/or

formation of voids and cavities occur.
Creep rate =c1 o
Creep strain at any time = zero time strain intercept + creep rate XTime
=€, +c, 0% xt

Where, ¢, ,c, are constants o = stress

1.19 Fatigue

When material issubjected to repeated stress, it fails at stress below the yield point stress. This failureis
known asfatigue. Fatigue failute is caused by means of aprogressive crack formation which are usually fine
and of microscopic. Endurance limit is used for reversed bending only while for othertypes of loading, the
term endurance strength may be used when referring the fatigue strength of thematerial. It may be defined
as the safe maximum stress which can be applied to the machine partworking under actual conditions.

1.20 Stress produced by a load P in falling from height ’h’

o, =0{1+4/1+&}
el

€ being stress & strain produced by static load P & L=length of bar.

P / 2AEh
=—|1+, 1+ ——
A PL

If a load P is applied suddenly to a bar then the stress & strain induced will be double than those
obtained by an equal load applied gradually.

1.21 Loads shared by the materials of a compound bar made of bars x & y due to load W,
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Chapter-1 Stress and Strain S K Mondal’s
AE
P =W
AE +AE,
— AyEy
g .
AE +AE,
. PL
1.22Elongation of a compound bar, § = ————
AE, +AFE,
1.23 Tension Test
g
b Necking
|Umate tensile strength
| Fracture strength Fracture
s
| Yield strengfth
L
3 Necking
By ‘r‘ i i
v = ‘oung’s modulus = slopa
= Fracture ! = stress/strain
: el ol
i H E‘Elasﬁc 'E‘ Plastic -:-?_r:l.il:.t Strain
i strain

......................

i) True elastic limit:based on micro-strai

and is related to the motion of a few hun
i)

i)

Taotal strain

n measurement at strains on order of 2 X 106, Very low value

dred dislocations.

Proportional limit:the highest stress at which stress is directly proportional to strain.

Elastic limit:is the greatest stress the material can withstand without any measurable permanent

strain after unloading. Elastic limit > proportional limit.

iv) Yield strengthis the stress required to
deformation.The offset yield strength

corresponding to the intersection of t

produce a small specific amount of -2

can be determined by the stress

he stress-strain curve and a line

parallel to the elastic line offset by a strain of 0.2 or 0.1%.(& = 0.002 or

0.001).

Extension

® The offset yield stress is referred to proof stress either at 0.1 or 0.5% strain used for design and

specification purposes to avoid the practical difficulties of measuring the elastic limit or

proportional limit.

Tensile strength or ultimate tensile

strength (UTS) 0, is the maximum load Pumax divided by the

original cross-sectional area A, of the specimen.

vi) % Elongation, = L’L_—L",is chiefly influ

0

hardening capacity of the material.
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Chapter-1 Stress and Strain S K Mondal’s

vii) Reduction of Area: q = %

o

® Reduction of area is more a measure of the deformation required to produce failure and its chief

contribution results from the necking process.

® Because of the complicated state of stress state in the neck, values of reduction of area are
dependent on specimen geometry, and deformation behaviour, and they should not be taken as

true material properties.

® RA is the most structure-sensitive ductility parameter and is useful in detecting quality

changes in the materials.

viii) Modulus of Elasticity or Young’s Modulus

® It is slope of elastic line upto proportional limit.
ix) Stress-strain response
£ €
Linear elastic Linear elastic-perfectly plastic
. 7.
£ £
Linear elastic-hardening plastic Linear elastic-hardening plasticity
with unloading

Nonlinear
Maoierately from start
deuctile {rubber,

Brittle (Al alloy) palymers)

glass, ceramics,
concrete in tension)

> 0
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Hard Drawn Brass

Castiron

‘Hard Drawn Copper |

iAIuminium Alloy |

Force {(F)or load

IAnnIed Copper I

>
Extension (x)

Nominal stress
o =Pl

Tool steel

MNote similar
elastic modulus

“a

High strength steel

Mild steel
(highly ductile)

Cons p'n:ur;us yield

Nominal strain e=AL /L,
& 3

x) Machine compliance
In mechanical testing of materials, when a strain gage or an in-situ element cannot be used to
measure the real material strain, it is customary to use the machine crosshead displacement to
measure the applied strain. Measurements conducted by crosshead displacement need to be
calibrated by taking into account the machine compliance Cm. In order to calibrate the machine
compliance (Cm=1/km = 6/P, where km is the stiffness constant, 6 the crosshead displacement, and P
the applied load). The total compliance measured by the crosshead displacement (Cr) is a sum of the
compliance of the analyzed material (Ca) and the compliance of the machine (Cn), simulating a
series spring system. Since Cr and Ca are measured during the experiment (Ca can be measured
using strain gauge), the next relation can determine the machine compliance:

Cr=Cn+Ca
The compliance of most machines is significantly low, confirming that our universal testing machine
is appropriated to obtain mechanical properties of materials with low modulus, thin films, and
polymers.

The machine compliance value is constant and needs to be considered to determine the real value of
the elastic modulus of a material under test, if the crosshead displacement is used to measure
strain. To determine the real elastic modulus (E) of a material under axial tension it is necessary to
take into account the machine compliance. This can be done using a spring-in-series system. The
elastic modulus as determined with the machine crosshead displacement (Er) needs to be corrected

to obtain the real modulus E,
Er
1-— CmETA
L

Where Cn is the measured machine compliance, A the sectional area, and L the gage length.

E=
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e Characteristics of Ductile Materials
1. The strain at failure is, > 0.05 , or percent elongation greater than five percent.

2. Ductile materials typically have a well defined yield point. The value of thestress at the yield point
defines the yield strength, o,.

3. For typical ductile materials, the yield strength has approximately the same valuefor tensile and
compressive loading (oy=0y~0y).

4. A single tensile test is sufficient to characterize the material behavior of a ductilematerial, o, and oui.

e Characteristics of Brittle Materials
1. The strain at failure ilure is, € <0.05 or percent elongation less than five percent.

2. Brittle materials do not exhibit an identifiable yield point; rather, they fail bybrittle fracture. The value
of the largest stress in tension and compressiondefines the ultimate strength, owand oucrespectively.

3. The compressive strength of a typical brittle material is significantly higher thanits tensile strength,
(0uc>> ow).

4. Two material tests, a tensile test and a compressive test, are required tocharacterize the material

behavior of a brittle material, owand ouc.

1.241zod Impact Test ’

-

The Notched Izod impact test is a technique to obtain a measure g

of toughness. Itmeasures the energy required to fracture a

. . . . L. . Harmimer
notched specimen at relatively high ratebending conditions. The Specimen o<
apparatus for the Izod impact test is shown in Figure. A pendulum e
with adjustable weight is released from a known height; a
rounded point onthe tip of the pendulum makes contact with a

notched specimen 22mm above the centerof the notch.

1.25 Elastic strain and Plastic strain

The strain present in the material after unloading is called the residual strain or plastic strain and the
strain disappears during unloading is termed as recoverable or elastic strain.

Equation of the straight line CB is given by
O =€or XE— €pagic XE =€pgpagc XE

Carefully observe the following figures and understand which one is Elastic strain and which one is Plastic

strain
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tr“ B & C A
A A

| i :
l ! :
| ! !
Ale n £ - . [+ Residual strain =

i Elastic strain EI’\?i -

: " astic strain

Residual strain Eliislic atiain
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Chapter-1 Stress and Strain

1.26 Elasticity

This is the property of a material to regain its original shape
after deformation when the external forces are removed. When
the material is in elastic region the strain disappears
completely after removal of the load, The stress-strain
relationship in elastic region need not be linear and can be
non-linear (example rubber). The maximum stress value below
which the strain is fully recoverable is called the elastic limit.
It is represented by point A in figure. All materials are elastic
to some extent but the degree varies, for example, both mild
steel and rubber are elastic materials but steel is more elastic

than rubber.

1.27 Plasticity

When the stress in the material exceeds the elastic limit, the
material enters into plastic phase where the strain can no
longer be completely removed. Under plastic conditions
materials ideally deform without any increase in stress. A
typical stress strain diagram for an elastic-perfectly plastic
material is shown in the figure. Mises-Henky criterion gives a

good starting point for plasticity analysis.

1.28 Strain hardening

If the material is reloaded from point C, it will follow the
previous unloading path and line CB becomes its new elastic
region with elastic limit defined by point B. Though the new
elastic region CB resembles that of the initial elastic region
OA, the internal structure of the material in the new state has
changed. The change in the microstructure of the material is
clear from the fact that the ductility of the material has come
down due to strain hardening. When the material is reloaded,
it follows the same path as that of a virgin material and fails
on reaching the ultimate strength which remains unaltered

due to the intermediate loading and unloading process.

1.29 Stress reversal andstress-strain hysteresis loop
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Chapter-1 Stress and Strain S K Mondal’s

We know that fatigue failure begins at a local discontinuity and when the stress at the discontinuity
exceeds elastic limit there is plastic strain. The cyclic plastic strain results crack propagation and fracture.

When we plot the experimental data with reversed loading which can induce plastic stress and the true
stress strain hysteresis loops is found as shown below.

Stress
—r — | —

Ag

| s-tr;in_

(SF.L Y- AE, —-

—— Ay ———

True stress-strain plot with a number of stress reversals

The area of the hysteresis loop gives the energy dissipationper unit volume of the material, per stress cycle.
This is termed the per unit volume damping capacity.

Due to cyclic strain the elastic limit increases for annealed steel and decreases for cold drawn steel.

Here the stress range is Ao. Aep and Aee are the plastic and elastic strain ranges, the total strain range

being Ae. Considering that the total strain amplitude can be given as
Ae = Aept Aee

Bauschinger Effect

e In most materials, plastic deformation in one direction will affect subsequent plastic response in
another direction. For example,a material that is pulled in tensionshows a reduction in compressive
strength.

e It depends on yield stress on loading path and direction.

o The basic mechanism for the Bauschinger effect is related to the dislocation structure in the cold
worked metal. As deformation occurs, thedislocations will accumulate at barriers and produce
dislocation pile-ups and tangles.

e Itis a general phenomenon found in most polycrystalline metals.

1.30Bolts of uniform strength

Diameter of the shank of the bolt is equal to the core diameter of the thread. Stress in the shank will be
more and maximum energy will be absorbed by shank.

1.31 Beam of uniform strength

It is one is which the maximum bending stress is same in every section along the longitudinal axis.
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For it M o bh’
Where b = Width of beam
h = Height of beam

To make Beam of uniform strength the section of the beam may be varied by
e Keeping the width constant throughout the length and varying the depth, (Most widely used)
o Keeping the depth constant throughout the length and varying the width
e By varying both width and depth suitably.

1.32 Pretensioned bolts or Preloaded bolts

Benefits
Rigidity of joints (no slip in service)
No loosening of bolts due to vibrations
Better fatigue performance
Tolerance for fabrication/erection (because of the use of clearance holes)

Disadvantages
Difficulty of ensuring that all bolts are adequately pre-loaded
In double cover connections, small differences in ply thickness in plates of nominally the same thickness
can result in the preload from bolts near the centre of joint being applied to the wrong side of the joint.

1.33 Fracture
Tension Test of Ductile Material ' ;

000 -
| |
V i
3 Microvoid Crack
i Necking formation and propagation
§ coalescence 4
|
Cup and cone fracture in a ductile metal '
(MS)
| _—=Shear
Fibrous-
i
Propagation along Typical cup and
shear plane cone fracture
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 25-Years GATE Questions

Stress in a bar

GATE-1.

GATE-1(i)

GATE-2.

GATE-2a.

Two identical circular rods of same diameter and same length are subjected to same
magnitude of axial tensile force. One of the rods is made out of mild steel having the
modulus of elasticity of 206 GPa. The other rod is made out of cast iron having the
modulus of elasticity of 100 GPa. Assume both the materials to be homogeneous and
isotropic and the axial force causes the same amount of uniform stress in both the
rods. The stresses developed are within the proportional limit of the respective
materials. Which of the following observations is correct? [GATE-2003]

(a) Both rods elongate by the same amount

(b) Mild steel rod elongates more than the cast iron rod

(¢) Castiron rod elongates more than the mild steel rod

(d) As the stresses are equal strains are also equal in both the rods

A rod of length L having uniform cross-sectional area A is subjected to a tensile force

P as shown in the figure below If the Young's modulus of the material varies linearly
from Ei, to Ezalong the length of the rod, the normal stress developed at the section-
SS is [GATE-2013]
e S

E; E;

P a—ro —— P

g ™
¢ »
L
P _P(E,—E,) _PE, _PE
(a)Z(b) A, 5y Ez)(C)A_El(d)A_EZ

A steel bar of 40 mm X 40 mm square cross-section is subjected to an axial
compressive load of 200 kN. If the length of the bar is 2 m and E = 200 GPa, the
elongation of the bar will be: [GATE-2006]
(2)1.25 mm (b)2.70 mm (c)4.05 mm (d) 5.40 mm

A 300 mm long copper wire of uniform cross-section is pulled in tension so that a
maximum tensile stress of 270 MPa is developed within the wire. The entire
deformation of the wire remains linearly elastic. The elastic modulus of copper is 100
GPa. The resultant elongation (in mm) is .[PI: GATE-2006]
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GATE-2b. A bar of varying square cross-section is loaded LLLLLLLLIIIIIIINIIIILLEIEE

GATE-2c. A curved member with a straight vertical leg is

GATE-2d.

symmetrically as shown in the figure. Loads
shown are placed on one of the axes of
symmetry of cross-section. Ignoring self

—— 100 mm ——)

weight, the maximum tensile stress in N/ mm”

anywhere is l €50 mm—p l
(a) 16.0 (b) 20.0 100 kN l 100 kN
(c) 25.0 (d) 30.0

50 kN
[CE: GATE-2003]

carrying a vertical load at Z. As shown in the figure.
The stress resultants in the XY segment are

(a) bending moment, shear force and axial force

(b) bending moment and axial force only

(c) bending moment and shear force only

(d) axial force only

[CE: GATE-2003]

A metallic rod of 500 mm length and 50 mm diameter, when subjected to a tensile
force of 100 kN at the ends, experiences an increase in its length by 0.5 mm and a
reduction in its diameter by 0.015 mm. The Poisson’s ratio of the rod material is
........... [GATE-2014]

True stress and true strain

GATE-3.

The ultimate tensile strength of a material is 400 MPa and the elongation up to
maximum load is 35%. If the material obeys power law of hardening, then the true
stress-true strain relation (stress in MPa) in the plastic deformation range is:

(a) o =540£%%° b) o =775 () o =540£°*° (d) 0 =775 [GATE-2006]

Elasticity and Plasticity

GATE-4.

GATE-5.

GATE-6.

An axial residual compressive stress due to a manufacturing process is present on the
outer surface of a rotating shaft subjected to bending. Under a given bending load,
the fatigue life of the shaft in the presence of the residual compressive stress is:

(a) Decreased

(b) Increased or decreased, depending on the external bending load[GATE-2008]
(¢) Neither decreased nor increased

(d) Increased

A static load is mounted at the centre of a shaft rotating at uniform angular velocity.

This shaft will be designed for [GATE-2002]
(a) The maximum compressive stress (static) (b) The maximum tensile stress (static)
(¢) The maximum bending moment (static) (d) Fatigue loading

Fatigue strength of a rod subjected to cyclic axial force is less than that of a rotating
beam of the same dimensions subjected to steady lateral force because

For-2020 (IES,GATE, PSUs) Page 25 of 493 Rev.0



Chapter-1 Stress and Strain S K Mondal’s

(a) Axial stiffness is less than bending stiffness [GATE-1992]

(b) Of absence of centrifugal effects in the rod

(¢) The number of discontinuities vulnerable to fatigue are more in the rod

(d) At a particular time the rod has only one type of stress whereas the beam has both the
tensile and compressive stresses.

Relation between the Elastic Modulii

GATE-7. The number of independent elastic constants required to define the stress-strain
relationship for an isotropic elastic solid is ........ [GATE-2014]
GATE-7G1).A rod of length L and diameter D is subjected to a tensile load P. Which of the
following is sufficient to calculate the resulting change in diameter?
(a) Young's modulus (b) Shear modulus [GATE-2008]
(c) Poisson's ratio (d)Both Young's modulus and shear modulus

GATE-T7ii. If the Poisson’s ratio of an elastic material is 0.4, the ratio of modulus ofrigidity to

Young’s modulus is ....... [GATE-2014]

GATE-8. In terms of Poisson's ratio (u) the ratio of Young's Modulus (E) to Shear Modulus (G)
of elastic materials is [GATE-2004]

1 1
(a)2(1+ p) (0)2(1-p) (C)E(l + 1) (d) 5(1 )

GATE-9. The relationship between Young's modulus (E), Bulk modulus (K) and Poisson's ratio
(n) is given by: [GATE-2002]

@E = 3K (1-2u) ®) K = 3E (1-2u)
© E = 3K (1-u) @ K = 3E (1-pu)

GATE-9() For an isotropic material, the relationship between the Young’s modulus (E), shear
modulus (G) and Poisson’s ratio (u)is given by [CE: GATE-2007; PI:GATE-2014]
@G-t B E--C (@G- e ——

21+ 21+ ) (T +mw 2(1 - 2w

GATE-10. A rod is subjected to a uni-axial load within linear elastic limit. When the change in
the stress is 200 MPa, the change in the strain is 0.001. If the Poisson’s ratio of the rod
is 0.3, the modulus of rigidity (in GPa) is [GATE-2015]

Stresses in compound strut

GATE-11. The figure below shows a steel rod of 25 mm? cross sectional area. It is loaded at four

points, K, L, M and N. [GATE-2004, IES 1995, 1997, 1998]
100 N g Ly 250 N 200 N " N4 50 N
500 mm 400 mm
e ——
1700 mm

Assume Egteel = 200 GPa. The total change in length of the rod due to loading is:
(2)1 pm (b) -10 um (c) 16 pm (d) -20 pm

GATE-12. A bar having a cross-sectional area of 700mm? is subjected to axial loads at the
positions indicated. The value of stress in the segment QR is: [GATE-2006]
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63 kN 35 kN 49 kN 21 kN
- > — ——
P Q R S
(a) 40 MPa (b) 50 MPa (c) 70 MPa (d) 120 MPa

GATE-13. A horizontal bar with a constant cross-section is subjected to loading as shown in the
figure. The Young’s moduli for the sections AB and BC are 3E and E, respectively.
X

A B c

3E — . A

LI L L

L L ERe E »

[GATE-2016]
For the deflection at C to be zero, the ratio P/F is

GATE-13a. A bimetallic cylindrical bar of cross sectional area 1 m? is made by bonding Steel
(Young's modulus = 210 GPa) and Aluminium (Young's modulus = 70 GPa) as
shown in the figure. To maintain tensile axial strain of magnitude 10-6 Steel bar
and compressive axial strain of magnitude 10-6 Aluminum bar, the magnitude of
the required force P (in KN) along the indicated direction is [GATE-2018]

i« [ [0———>»<— | [)———>

——— P
Steel Aluminium

clamped end

clamped end

perfectly bonded interface
(a) 70 (b) 140 (c) 210 (d) 280

GATE-14. A rigid bar is suspended by three rods made of the Wi\ R
same material as shown in the figure. The area and
length of the central rod are 3A and L, respectively
while that of the two outer rods are 2A and 2L,
respectively. If a downward force of 50 kN is
applied to the rigid bar, the forces in the central
and each of the outer rods will be
(a) 16.67 kN each (b) 30 kN and 15 kN
(¢) 30 kN and 10 kN (d) 21.4 kN and 14.3 kN

50 kN
[CE: GATE-2007]

Thermal Effect

GATE-15. A uniform, slender cylindrical rod is made of a homogeneous and isotropic material.
The rod rests on a frictionless surface. The rod is heated uniformly. If the radial and
longitudinal thermal stresses are represented by o: and o, respectively, then

[GATE-2005]
(a)o,.=0,0.=0 (b)o,#0,0.=0 (c)o,=0,0, %0 (d)o.#0,0, #0

GATE-16. A solid steel cube constrained on all six faces is heated so that the
temperature rises uniformly byAT. If the thermal coefficient of the material is
a, Young’s modulus is E and the Poisson’s ratiois v, the thermal stress
developed in the cube due to heating is
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a(AT)E A _2a(AT)E _3a(AT)E J _a(AT)E

- (1-20) (1-2v) 7w 3(1-20)

[GATE-2012]

GATE-16a. A solid cube of side 1 m is kept at a room temperature of 32°C. The coefficient of
linear thermal expansion of the cube material is 1 X 10-5/°C and the bulk modulus
is 200 GPa. If the cube is constrained all around and heated uniformly to 42°C,
then the magnitude of volumetric (mean) stress induced due to heating is

MPa. [GATE-2019]

GATE-17. A metal bar of length 100 mm is inserted between two rigid supports and its
temperature is increased by 10° C. If the coefficient of thermal expansion is
12x107° per °C and the Young’s modulus is 2 x10° MPa, the stress in the bar is

(a) zero (b) 12 MPa (c) 24 Mpa (d) 2400 MPa [CE: GATE-2007]

GATE-18. A 200 mm long, stress free rod at room temperature is held between two immovable
rigid walls. The temperature of the rod is uniformly raised by 250°C. If the Young’s

modulus and coefficient of thermal expansion are 200 GPaand 1x107°/°C,

respectively, the magnitude of the longitudinal stress (in MPa) developed in the rod
IS tevievnincennns [GATE-2014]

GATE-19. A circular rod of length ‘I’ and area of cross-section ‘A’ has a modulus of elasticity ‘E’
and coefficient of thermal expansion 'a'.One end of the rod is fixed and other end is
free. If the temperature of the rod is increased by AT, then [GATE-2014]

(a) stress developed in the rod is Ea AT and strain developed in the rod is o AT

(b) both stress and strain developed in the rod are zero
(c) stress developed in the rod is zero and strain developed in the rod is o AT

(d) stress developed in the rod is E o AT and strain developed in the rod is zero

GATE-20. A steel cube, with all faces free to deform, has Young’s modulus, E, Poisson’s ratio, v,
and coefficient of thermal expansion, a. The pressure (hydrostatic stress) developed
within the cube, when it is subjected to a uniform increase in temperature, AT, is
given by [GATE-2014]
(@ 0 ®) a(ATE © _a(ATE d) a(ATE

1-2v 1-2v 3(1 - 2v)

GATE-20a.A circular metallic rod of length 250 mm is placed between two rigid immovable walls
as shown in the figure. The rod is in perfect contact with the wall on the left side and
there is a gap of 0.2 mm between the rod and the wall on the right side. If the
temperature of the rod is increased by 200°C, the axial stress developed in the rod is

MPa. [GATE-2016]
Young’s modulus of the material of the rod is 200 GPa and the coefficient of thermal
expansion is 10-°percC.

A

»
>

DI

M\

250 mm

—> |<— 0.2 mm

GATE-20b.A steel bar is held by two fixed supports as shown in the figure and is subjected to an
increase oftemperature AT=100°C. If the coefficient of thermal expansion and
Young's modulus of elasticityof steel are 11x10-6/°C and 200 GPa, respectively, the
magnitude of thermal stress (in MPa)induced in the bar is . [GATE-2017]
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#

7
GATE-20c.A horizamtal bar, fixed at one end (x = 0), has a length of 1 m, and cross-sectional area
of100 mm?.Its elastic modulus varies along its length as given by E(x) = 100 ex GPa,
where x isthe length coordinate (in m) along the axis of the bar. An axial tensile load
of 10 kN is applied atthe free end (x = 1). The axial displacement of the free end is
mm. [GATE-2017]

Fatigue, Creep

GATE-21. The creep strains are [CE: GATE-2013]
(a) caused due to dead loads only (b) caused due to live loads only
(c) caused due to cyclic loads only (d) independent of loads

Tensile Test

GATE-22. The stress-strain curve for mild steel is shown in the figure given below. Choose the

correct option referring to both figure and table. [GATE-2014]
* Point on the graph Description of the point
T P 1. Upper Yield Point
Q 2. Ultimate Tensile Strength
R 3. Proportionality Limit
o= U S 4. Elastic Limit
E T 5. Lower Yield Point
& U 6. Failure
& 14
D
2 Q
]
i)
m
P B
Strain 2 (%)
P Q R S T U P Q R S T U
(a) 1 2 3 4 5 6(b) 3 1 4 2 6 5
@) 3 4 1 5 2 6(d) 4 1 5 2 3 6
GATE-22a. In the engineering stress-strain curve for mild steel, the Ultimate Tensile
Strength(UTS) refers to [GATE-2017]
(a) Yield stress (b) Proportional limit
(c) Maximum Stress (d) Fracture stress
GATE-22b. The elastic modulus of a rigid perfectly plastic solid is [PI: GATE-2016]
(a) 0 (b) 1 (c) 100 (d) infinity
GATE-23. A test specimen is stressed slightly beyond the yield point and then unloaded. Its
yield strength will [GATE-1995]
(a) Decrease (b) Increase
(c) Remains same (d) Becomes equal to ultimate tensile strength

GATE-23a.Which one of the following types of stress-strain relationship best describes the
behavior of brittle materials, such as ceramics and thermosetting plastics,
o = stress; ¢ = strain [GATE-2015]
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GATE-23b. 1In alinearly hardening plastic material, the true stress beyond initial yielding

[GATE-2018]

(a) increases linearly with the true strain

(b) decreases linearly with the true strain

(c) first increases linearly and then decreases linearly with the true strain

(d) remain constant

GATE-23c. Consider the stress-strain curve for an
hardening metal as shown in the figure. The metal was loaded in uniaxial
tension starting from O. Upon loading, the stress-strain curve passes
through initial yield point at P, and then strain hardens to point @, where
the loading was stopped. From point @, the specimen was unloaded to
point R, where the stress is zero. If the same specimen is reloaded in

tension from point R, the value of stress at which the material yields again
i MPa. [GATE-2019]

ideal elastic-plastic strain

1S

210

180 -~

Stress (MPa)

(@) R Strain i

GATE-24. The flow stress (in MPa) of a material is given by o =500c"! where ¢ is true strain.
The Young’s modulus of elasticity of the material is 200 GPa. A block of thickness 100
mm made of this material is compressed to 95 mm thickness and then the load is
removed. The final dimension of the block (in mm) is [GATE-2015]

GATE-25. The strain hardening exponent n of stainless steel SS304 with distinct yield and UTS
values undergoing plastic deformation is [GATE-2015]
(a)n<0 (b) n =0 (c)0<n<1 dn=1
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Under repeated loading a e

material has the stress-strain

curve shown in figure, which of

the following statements is

true?

(a) The smaller the shaded area,
the better the material damping .

(b) The larger the shaded area, the Lk
better the material damping

(c) Material damping 1is an
independent material property
and does not depend on this
curve

(d) None of these

[GATE-1999]

GATE-27. Pre-tensioning of a bolted joint is used to [GATE-2018]

(a) strain harden the bolt head
(b) decrease stiffness of the bolted joint
(c) increase stiffness of the bolted joint

(d) prevent yielding of the thread root

GATE-28. In UTM experiment, a sample of length 100 mm, was loaded in tension until failure.
The failure load was 40 kN. The displacement, measured using the cross-head motion, at
failure, was 15 mm. The compliance of the UTM is constant and is given by 5 x 108 m/N. The
strain at failure in the sample is %. [GATE-2019]

Previous 25-Years IES Questions

Stress in a bar due to self-weight

IES-1.

IES-2.

IES-3.

A solid uniform metal bar of diameter D and length L is hanging vertically from its
upper end. The elongation of the bar due to self weight is: [TES-2005]

(a) Proportional to L and inversely proportional to D2

(b)  Proportional to L2 and inversely proportional to D2

(¢)  Proportional of L but independent of D

(d)  Proportional of L2 but independent of D

The deformation of a bar under its own weight as compared to that when subjected
to a direct axial load equal to its own weight will be: [IES-1998]
(a) The same (b) One-fourth (c) Half (d) Double

A rigid beam of negligible weight is NSNS NININES
supported in a horizontal position by
two rods of steel and aluminum, 2 m
and 1 m long having values of cross -
sectional areas 1 cm? and 2 cm? and E of NANNNFEENNA

200 GPa and 100 GPa respectively. A 2
load P is applied as shown in the figure m 1m
Steel Aluminium

If the rigid beam is to remain horizontal
then
(a) The forces on both sides should

be equal i Rigid Beam
(b) The force on aluminum rod P

. L
should be twice the force on steel [IES-2002]
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The force on the steel rod should
be twice the force on aluminum
The force P must be applied at
the centre of the beam

A rigid beam of negligible weight, is supported in a horizontal position by two
rods of steel and aluminium, 2 m and 1 m long, having values of cross-sectional areas
100 mm2and 200 mm2, and Young's modulus of 200 GPa and 100 GPa, respectively. A
load P is applied as shown in the figure below: [TES-2018]

2 m| Steel .
1 m | Aluminium

[ ]
Rigid beam l
P

If the rigid beam is to remain horizontal, then

(a)
(b)
(c)
(d)

the force P must be applied at the centre of the beam

the force on the steel rod should be twice the force on the aluminium rod
the force on the aluminium rod should be twice the force on the steel-rod
the forces on both the rods should be equal

Bar of uniform strength

IES-4.

IES-5.

IES-6.

IES-7.

IES-7a.

IES-7b.

Which one of the following statements is correct? [TES 2007]
A beam is said to be of uniform strength, if

(@) The bending moment is the same throughout the beam

(b)  The shear stress is the same throughout the beam

(¢) The deflection is the same throughout the beam

(d) The bending stress is the same at every section along its longitudinal axis

Which one of the following statements is correct? [IES-2006]
Beams of uniform strength vary in section such that

(a) bending moment remains constant (b) deflection remains constant

(c) maximum bending stress remains constant (d) shear force remains constant

For bolts of uniform strength, the shank diameter is made equal to [IES-2003]

(a) Major diameter of threads (b) Pitch diameter of threads

(c) Minor diameter of threads (d) Nominal diameter of threads

A bolt of uniform strength can be developed by [IES-1995]

(a) Keeping the core diameter of threads equal to the diameter of unthreaded portion of the
bolt

(b) Keeping the core diameter smaller than the diameter of the unthreaded portion

(¢) Keeping the nominal diameter of threads equal the diameter of unthreaded portion of the
bolt

(d) One end fixed and the other end free

In a bolt of uniform strength:

(a) Nominal diameter of thread is equal to the diameter of shank of the bolt

(b) Nominal diameter of thread is larger than the diameter of shank of the bolt
(¢c) Nominal diameter of thread is less than the diameter of shank of the bolt
(d) Core diameter of threads is equal to the diameter of shank of the bolt.

[IES-2011]

The shock-absorbing capacity (resilience) of bolts can be increalsed by [IES-2019 Pre.]

(@)
(b)
(c)

increasing the shank diameter above the core diameter of threads

reducing the shank diameter to the core diameter of threads
decreasing the length of shank portion of the bolt
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(d) pre-heating of the shank portion of the bolt

Elongation of a Taper Rod

IES-8. Two tapering bars of the same material are subjected to a tensile load P. The lengths
of both the bars are the same. The larger diameter of each of the bars is D. The
diameter of the bar A at its smaller end is D/2 and that of the bar B is D/3. What is the
ratio of elongation of the bar A to that of the bar B? [TIES-2006]
(a)3:2 (b) 2: 3 (©4:9 (d1:3

IES-9. A bar of length L tapers uniformly from diameter 1.1 D at one end to 0.9 D at the
other end. The elongation due to axial pull is computed using mean diameter D. What

is the approximate error in computed elongation? [TES-2004]
(a) 10% (b) 5% (c) 1% (d) 0.5%

IES-10. The stretch in a steel rod of circular section, having a length 'l' subjected to a tensile
load' P' and tapering uniformly from a diameter d: at one end to a diameter d: at the
other end, is given [IES-1995]

Pl pl.r pl.x 4pl
(a) (b) —— (c) (d) ———
AEd d, Edd, AEd d, rEdd,

IES-11. A tapering bar (diameters of end sections being di: anddz a bar of uniform cross-
section ’d’ have the same length and are subjected the same axial pull. Both the bars
will have the same extension if’d’ is equal to [TES-1998]

e N A O N L TN L

IES-11(i). A rod of length I tapers uniformly from a diameter D at one end to a diameter d at the
other. The Young’s modulus of the material is E. The extension caused by an axial

load P is [TES-2012]

4Pl 4Pl 4Pl 2Pl
(a)

(b) © 5 D rpas

w(D? — d?)E > " w(D? + d?)E
IES-11ii. A rod of length L tapers uniformly from a diameter D at one end to a diameter D/2 at
the other end and is subjected to an axial load P. A second rod of length L and
uniform diameter D is subjected to same axial load P. Both the rods are of same
material with Young’s modulus of elasticity E. The ratio of extension of the first rod
to that of the second rod [TES-2014]
(a) 4 (b) 3 (c) 2 (d1

Poisson’s ratio

IES-12. In the case of an engineering material under unidirectional stress in the x-direction,
the Poisson's ratio is equal to (symbols have the usual meanings)
[TIAS 1994, IES-2000]

(@) 22 by 2 02 @2
& O O &

X X X X

IES-13. Which one of the following is correct in respect of Poisson's ratio (v) limits for an
isotropic elastic solid? [TES-2004]
(a) —o<y <0 ®) 1/4<v<1/3 ©—-1<v<1/2 @ —1/2<v<L1/2

TES-14. Match List-I (Elastic properties of an isotropic elastic material) with List-II (Nature
of strain produced) and select the correct answer using the codes given below the

Lists: [TES-1997]
List-1 List-II
A. Young's modulus 1. Shear strain
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B. Modulus of rigidity 2. Normal strain
C. Bulk modulus 3. Transverse strain
D. Poisson's ratio 4. Volumetric strain
Codes: A B C D A B C D

(a 1 2 3 4 (b) 2 1 3 4

(¢ 2 1 4 3 (d) 1 2 4 3
If the value of Poisson's ratio is zero, then it means that [TES-1994]
(@) The material is rigid.
(b) The material is perfectly plastic.
(c)  There is no longitudinal strain in the material
(d) The longitudinal strain in the material is infinite.
Which of the following is true (u= Poisson's ratio) [IES-1992]
(@ O<pu<l1/2 b)) 1<u<0 @l<u<-1 (d) 00 < 1 << —0

Elasticity and Plasticity

IES-17. If the area of cross-section of a wire is circular and if the radius of this circle
decreases to half its original value due to the stretch of the wire by a load, then the
modulus of elasticity of the wire be: [TES-1993]

(a) One-fourth of its original value (b) Halved (c) Doubled (d) Unaffected

IES-18. The relationship between the Lame’s constant ‘A’, Young’s modulus ‘E’ and the
Poisson’s ratio ‘i’ [TES-1997]
£ p— Y — (c) A=t (d)a=-LH

(l+,u)(1—2,u) (1+2u)(1—y) 1+ u (l—u)

IES-19. Which of the following pairs are correctly matched? [TIES-1994]
1. Resilience............... Resistance to deformation.

2. Malleability .............. Shape change.

3. Creep .eeeeeeeeeeecccnnns Progressive deformation.

4. Plasticity .... cecoevunnene Permanent deformation.

Select the correct answer using the codes given below:

Codes: (a) 2,3 and 4 (b)1,2and 3 (¢)1,2and 4 (d)1,3and 4

IES-19a Match List — I with List - IT and select the correct answer using the code given below
thelists: [TES-2011]

List -1 List -1I
A. Elasticity 1. Deform non-elastically without fracture
B. Malleability 2. Undergo plastic deformation under tensile load
C. Ductility 3. Undergo plastic deformation under compressive load
D. Plasticity 4. Return to its original shape on unloading
Codes A B C D A B C D
(a) 1 2 3 4 (b) 4 2 3 1
©) 1 3 2 4 d) 4 3 2 1

IES-19b. Assertion (A): Plastic deformation is a function of applied stress, temperature and strain rate.

[IES-2010]
Reason (R): Plastic deformation is accompanied by change in both the internal and external
state of the material.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(c) A is true but R 1s false
(d) A 1s false but R is true

For-2020 (IES,GATE, PSUs) Page 34 of 493 Rev.0



Chapter-1 Stress and Strain S K Mondal’s
Creep and fatigue

IES-20. What is the phenomenon of progressive extension of the material i.e., strain

increasing with the time at a constant load, called? [IES 2007]
(a) Plasticity (b) Yielding (b) Creeping (d) Breaking

IES-21. The correct sequence of creep deformation in a creep curve in order of their
elongation is: [IES-2001]

(a) Steady state, transient, accelerated (b) Transient, steady state, accelerated
(c) Transient, accelerated, steady state (d) Accelerated, steady state, transient

IES-22. The highest stress that a material can withstand for a specified length of time

without excessive deformation is called [TES-1997]
(a) Fatigue strength (b) Endurance strength
(c) Creep strength (d) Creep rupture strength

IES-22a. A transmission shaft subjected to bending loads must be designed on the basis of
(a) Maximum normal stress theory [TES-1996]
(b) Maximum shear stress theory
(c) Maximum normal stress and maximum shear stress theories
(d) Fatigue strength

IES-22b. Endurance limit is of primary concern in the design of a/an [TES-2016]
1. rotating shaft 2. industrial structure
3. column 4. machine base
Which of the above is/are correct?
(a) 1 only (b) 2 only (c) 3 and 4 only (d1,2,3and 4
IES-23. Which one of the following features improves the fatigue strength of a metallic
material? [IES-2000]
(a) Increasing the temperature (b) Scratching the surface
(c) Overstressing (d) Under stressing
TES-24. Consider the following statements: [TES-1993]
For increasing the fatigue strength of welded joints it is necessary to employ
1. Grinding 2. Coating 3. Hammer peening
Of the above statements
(a) 1 and 2 are correct (b) 2 and 3 are correct
(c) 1 and 3 are correct (d) 1, 2 and 3 are correct

Relation between the Elastic Modulii

TES-25. For a linearly elastic, isotropic and homogeneous material, the number of elastic
constants required to relate stress and strain is:[IAS 1994; IES-1998, CE:GATE-2010]
(a) Two (b) Three (c) Four (d) Six

IES-26. E, G, K and p represent the elastic modulus, shear modulus, bulk modulus and
Poisson's ratio respectively of a linearly elastic, isotropic and homogeneous material.
To express the stress-strain relations completely for this material, at least[IES-2006]
(a) E, G and p must be known (b) E, K and p must be known
(c) Any two of the four must be known (d) All the four must be known

IES-26a. An isotropic elastic material is characterized by [TES-2016]
(a) two independent moduli of elasticity along two mutually perpendicular directions
(b) two independent moduli of elasticity along two mutually perpendicular directions
andPoisson’s ratio
(c) a modulus of elasticity, a modulus of rigidity and Poisson’s ratio
(d) any two out of a modulus of elasticity, a modulus of rigidity and Poisson’s ratio
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IES-27.

IES-28.

IES-28a.

IES-29.

IES-30.

IES-31.

IES-31(3).

IES-31(ii).

S K Mondal’s

The number of elastic constants for a completely anisotropic elastic material which
follows Hooke's law is: [IES-1999]
(a) 3 (b) 4

Stress and Strain

(c) 21 (d) 25

What are the materials which show direction dependent properties, called?

(a) Homogeneous materials (b) Viscoelastic materials[IES 2007, IES-2011]
(c) Isotropic materials (d) Anisotropic materials

Measured mechanical properties of material are same in a particular direction at
each point. This property of the material is known as [TES-2016]
(a) isotropy (b) homogeneity (c) orthotropy (d) anisotropy

An orthotropic material, under plane stress condition will have:
(a) 15 independent elastic constants (b) 4 independent elastic constants
(c) 5 independent elastic constants (d) 9 independent elastic constants

[TIES-2006]

Match List-I (Properties) with List-II (Units) and select the correct answer using the

codes given below the lists: [TES-2001]
ListI List II
A. Dynamic viscosity 1. Pa
B. Kinematic viscosity 2. m?/s
C. Torsional stiffness 3. Ns/m?
D. Modulus of rigidity 4. N/m
Codes: A B C D A B C D
(@) 3 2 4 1 (b) 5 2 4 3
b) 3 4 2 3 (d) 5 4 2 1

Young's modulus of elasticity and Poisson's ratio of a material are 1.25 x10> MPa and
0.34 respectively. The modulus of rigidity of the material is:
[IAS 1994, IES-1995, 2001, 2002, 2007]
(b) 0.4664 x105 Mpa
(d) 0.9469 x10°> MPa

(a) 0.4025 x105Mpa
(c) 0.8375 x105 MPa

Consider the following statements:
Modulus of rigidity and bulk modulus of a material are found to be 60 GPa and 140
GPa respectively. Then [IES-2013]

1. Elasticity modulus is nearly 200 GPa
2. Poisson’s ratio is nearly 0.3

3. Elasticity modulus is nearly 158 GPa
4. Poisson’s ratio is nearly 0.25

Which of these statements are correct?
(@) 1and 3 (b) 2 and 4 (¢) 1 and 4 (d) 2 and 3

The modulus of rigidity and the bulk modulus of a material are found as 70 GPa and
150 GPa respectively. Then [IES-2014]

1. elasticity modulus is 200 GPa

2. Poisson’s ratio is 0.22

3. elasticity modulus is 182 GPa

4. Poisson’s ratio is 0.3

Which of the above statements are correct?
(a) 1and 2 (b) 1 and 4

(¢c) 2 and 3 (d) 3and 4

IES-31(iii).For a material following Hooke’s law the values of elastic and shear moduli are 3x10%

IES-32.

For-2020 (IES,GATE, PSUs)

MPa and 1.2x105 MPa respectively. The value for bulk modulus
(a) 1.5x10°MPa (b) 2x105MPa (c) 2.5x10°MPa

[IES-2015]
(d) 3x10°MPa

In a homogenous, isotropic elastic material, the modulus of elasticity E in terms of G
and K is equal to [IAS-1995, IES - 1992]
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G+3K 3G+K 9KG 9KG
@——— (b) (© (d)
9KG 9KG G+3K K +3G
IES-33. What is the relationship between the linear elastic properties Young's modulus (E),
rigidity modulus (G) and bulk modulus (K)? [TES-2008]
(a)l:g_;_g (b)§:2+l (0)2:34_1 (d)g:l+i
E K G E K G E K G E K G

IES-34. What is the relationship between the liner elastic properties Young’s modulus (E),

rigidity modulus (G) and bulk modulus (K)? [TES-2009]
(a) E = ﬂ o) E= ﬁ © E = 9KG @ E= 9KG
9K +G K+G K +3G 3K+G

IES-35. If E, G and K denote Young's modulus, Modulus of rigidity and Bulk Modulus,
respectively, for an elastic material, then which one of the following can be possibly
true? [IES-2005]

(a) G=2K (b) G=E () K=E dG=K=E

IES-36. If a material had a modulus of elasticity of 2.1 X 106 kgf/cm2 and a modulus of rigidity
of 0.8 x 106 kgf/cm?2 then the approximate value of the Poisson's ratio of the material
would be: [IES-1993]

(a) 0.26 (b) 0.31 () 0.47 ) 0.5

IES-37. The modulus of elasticity for a material is 200 GN/m2 and Poisson's ratio is 0.25.
What is the modulus of rigidity? [TES-2004]
(a) 80 GN/m?2 (b) 125 GN/m? (c) 250 GN/m? (d) 320 GN/m?

IES-37a. The modulus of rigidity of an elastic material isfound to be 38.5% of the value of its
Young’smodulus. The poisson’s ratio pof the materialis nearly:[IES-2017 (Prelims)]

(a) 0.28 (b) 0.30 (c) 0.33 (d) 0.35
IES-38. Consider the following statements: [IES-2009]

1. Two-dimensional stresses applied to a thin plate in itsown plane represent the
planestress condition.

2. Under plane stress condition, the strain in the direction perpendicular to the
plane is zero.

3. Normal and shear stresses may occur simultaneously on aplane.

Which of the above statements is /are correct?

(a)1 only (b)1 and 2 (¢)2 and 3 ()1 and 3

IES-38(i). A 16 mm diameter bar elongates by 0.04% under a tensile force of 16 kN. The average
decrease in diameter is found to be 0.01% Then: [TES-2013]
1. E=210 GPa and G = 77 GPa
2. E =199 GPa and v =0.25
3. E=199 GPa and v =0.30
4. E =199 GPa and G =80 GPa
Which of these values are correct?
(a) 3 and 4 (b) 2 and 4 (¢)1and 3 (d)1and 4

IES-38a. A bar produces a lateral strain of magnitude 60 x 10-5mm when subjected to a tensile
stress of magnitude 300 MPa along the axial direction. What is the elastic modulus of
the material if the poisson’s ratio is 0.3? [IES-2017 (Prelims)]

(a) 200 GPa (b) 150 GPa (c) 125 GPa (d) 100 GPa

Stresses in compound strut
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IES-39.

IES-39a.

IES-39b.

IES-39c.

IES-40.

TES-40(i).

IES-41.

IES-42.

Stress and Strain S K Mondal’s

A copper piece originally 305 mm long is pulled in tension with a stress of 276 MPa.
If the deformation is entirely elastic and the modulus of elasticity is 110 GPa, the resultant
elongation will be nearly [TES-2019 Pre.]
(a) 0.43 mm (b) 0.54 mm (c) 0.65 mm (d) 0.77 mm

Eight bolts are to be selected for fixing the cover plate of a cylinder subjected to a
maximum load of 980-175 kN. If the design stress for the bolt material is 315 N/mm?2,
what is the diameter of each bolt? [TES-2008]

(a) 10 mm (b) 22 mm (c) 30 mm (d) 36 mm

A tension member of square cross-section of side 10 mm and Young’s modulus E is
replaced by another member of square cross-section of same length but Young’s
modulus E/2. The side of the new square cross-section, required to maintain the same
elongation under the same load, is nearly [TES-2014]

(a) 14 mm (b) 17 mm (c) 8 mm (d) 5 mm

Two steel rods of identical length and material properties are subjected to equal
axialloads. The first rod is solid with diameter d and the second is a hollow one with
externaldiameter D and interned diameter 50% of D. If the two rods experience equal

extensions,the ratio of % [TES-2016]
3 V3 1 1
(@ ; (b) = © 3 @

For a composite consisting of a bar enclosed inside a tube of another material when
compressed under a load 'w' as a whole through rigid collars at the end of the bar.
The equation of compatibility is given by (suffixes 1 and 2) refer to bar and tube
respectively [TES-1998]

()W, +W, =W (bYW, +W, = Const. (c) W :L (d) u =£

AE,  AE, AE, AE,

A copper rod of 2 cm diameter is completely encased in a steel tube of inner diameter
2 cm and outer diameter 4 ecm. Under an axial load, the stress in the steel tube is 100
N/mm?. If Es=2 Ec, then stress in the copper rod is [IES-2015]

(a) 50N/mm?2 (b)33.33 N/mm?2 (c) 100 N/mm?2 (d) 300 N/mm?2

When a composite unit consisting of a steel rod surrounded by a cast iron tube is
subjected to an axial load. [TES-2000]
Assertion (A): The ratio of normal stresses induced in both the materials is equal to
the ratio of Young's moduli of respective materials.

Reason (R): The composite unit of these two materials is firmly fastened together at
the ends to ensure equal deformation in both the materials.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is notthe correct explanation of A

(¢) Aistrue but R is false

(d) Aisfalse but R is true

The figure below shows a steel rod of 25 mm? cross sectional area. It is loaded at four

points, K, L, M and N. [GATE-2004, IES 1995, 1997, 1998]
PRl b gl <LZONZy, NP AL
500 mm 400 mm
1700 mm

Assume Esteel = 200 GPa. The total change in length of the rod due to loading is
(@ 1lum (b)-10 pm (c) 16 pm (d) -20 pm
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IES-42a. A steel rod of cross-sectional area 10 mm? is subjected to loads at points P, Q, R and S
as shown in the figure below: [IES-2016]

400 N
200N #— P ) preilpe 3:}0?:‘_9 S=—»100N

fatme SO0 T et | () 7 ) et 5510 77 et
If Esteel = 200 GPa, the total change in length of the rod due to loading is

(a) —5 pm (b) — 10 pm (c) — 20 pm (d) — 25 pm
IES-42b. The loads acting on a 3 mm diameter bar at different points are as shown in the figure:
A B o D
10 kN 3 kN 5 kN
2 kN . .
s -If -l-q -
2Zm 1m 3m
If E = 205 GPa, the total elongation of the bar will be nearly [IES-2019 Pre.]
(a) 29.7 mm (b) 25.6 mm (c) 21.5mm (d) 17.4 mm
IES-43. The reactions at the rigid A 4 v B
supports at A and B for -1 C L~
the bar loaded as shown f_ i
in the figure are A >10kN F
respectively. - -
(a) 20/3 kN,10/3 kN o e
(b) 10/3 kN, 20/3 kN -~ L
(c) 5 kN, 5 kN “ Im 2m gt
(d) 6 kN, 4 kN - M€ >

[IES-2002, IES-2011; IAS-2003]

IES-43(i) In the arrangement as shown in the figure, the stepped steel bar ABC is loaded by a
load P. The material has Young’s modulus E = 200 GPa and the two portions. AB and

BC have area of cross section 1cm” and 2cm® respectively. The magnitude of load P

required to fill up the gap of 0.75 mm is: [TES-2013]

-

”

A

ﬁ B P C

z > 1

-

-

”

< 1 m =] 1m > Gap 0.75 mm
(a) 10 kN (b) 15 kKN (c) 20 kN (d) 25 kN
IES-44. Which one of the following is correct? [TES-2008]

When a nut is tightened by placing a washer below it, the bolt will be subjected to
(a) Compression only (b) Tension
(c) Shear only (d) Compression and shear

IES-45. Which of the following stresses are associated with the tightening of nut on a bolt?
[TES-1998]

Tensile stress due to the stretching of bolt

Bending stress due to the bending of bolt

Crushing and shear stresses in threads

Torsional shear stress due to frictional resistance between the nut and the bolt.

b
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Select the correct answer using the codes given below
Codes: (a) 1,2 and 4 (b) 1,2 and 3 (¢)2,3and4 (d)1,3and4

Thermal effect

IES-46.

IES-47.

IES-48.

IES-49.

IES-49(3).

IES-50.

IES-50a.

IES-51.

IES-52.

IES-53.

A 100 mm X 5 mm X 5 mm steel bar free to expand is heated from 15°C to 40°C. What
shall be developed? [TES-2008]
(a) Tensile stress (b) Compressive stress (c) Shear stress (d) No stress

Which one of the following statements is correct? [GATE-1995; IES 2007, 2011]
If a material expands freely due to heating, it will develop
(a) Thermal stress  (b) Tensile stress (c) Compressive stress (d) No stress

A cube having each side of length a, is constrained in all directions and is heated
uniformly so that the temperature is raised to T°C. If a is the thermal coefficient of
expansion of the cube material and E the modulus of elasticity, the stress developed

in the cube is: [TES-2003]
alE aTE alE aTE
(a) b) —— (c) (d) ——
(1—27/) 2y (l+27)
Consider the following statements: [TES-2002]

Thermal stress is induced in a component in general, when
1. A temperature gradient exists in the component
2. The component is free from any restraint
3. Itis restrained to expand or contract freely
Which of the above statements are correct?
(a) 1and 2 (b) 2 and 3 (c) 3 alone (d) 2 alone

In a body, thermal stress is induced because of the existence of: [IES-2013]
(a) Latent heat (b) Total heat
(c) Temperature gradient (d) Specific heat

A steel rod 10 mm in diameter and 1m long is heated from 20°C to 120°C, E = 200 GPa
and a = 12 x 106 per °C. If the rod is not free to expand, the thermal stress developed

is: [IAS-2003, IES-1997, 2000, 2006]
(a) 120 MPa (tensile) (b) 240 MPa (tensile)
(c) 120 MPa (compressive) (d) 240 MPa (compressive)

A circular steel rod of 20 cm? cross-sectional area and 10 m length is heated through
50 °C with ends clamped before heating. Given, E = 200 GPa and coefficient of
thermal expansion, a = 10 x 107%/°C, the thrust force generated on the clamp is

(a) 100 kN (b) 150 kN (c) 200 kN (d) 250 kN[IES-2016]

A cube with a side length of 1 cm is heated uniformly 1° C above the room
temperature and all the sides are free to expand. What will be the increase in volume
of the cube? (Given coefficient of thermal expansion is a per °C)

(a) 3 a cm? () 2 a cm3 (c) a cm? (d) zero [TES-2004]

A bar of copper and steel form a composite system. [TES-2004, 2012]

They are heated to a temperature of 40 ° C. What type of stress is induced in the
copper bar?

(a) Tensile (b) Compressive (c) Both tensile and compressive (d) Shear

a=12.5x10°/°C, E=200GPa If the rod fitted strongly between the supports as shown

in the figure, is heated, the stress induced in it due to 20°C rise in temperature will
be: [TES-1999]
(a) 0.07945 MPa (b) -0.07945 MPa (c) -0.03972 MPa (d) 0.03972 MPa
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IES-53a.

IES-53b.
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SRR
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2
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o oam  m mom E= E — — —
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0.5m N

e |

4

A steel rod, 2 m long, is held between two walls and heated from 20°C to 60°C. Young’s
modulus and coefficient of linear expansion of the rod material are 200 x 103MPa and
10x10-6/°C respectively. The stress induced in the rod, if walls yield by 0.2 mm, is

(a) 60 MPa tensile (b) 80 MPa tensile [TES-2014]

(c) 80 MPa compressive (d) 60 MPa compressive

A steel rod 10 m long is at a temperature of 20°C. The rod is heated to a temperatureof
60°C. What is the stress induced in the rod if it is allowed to expand by 4 mm, when E
=200 GPa and a=12 x 10-6/°C? [TES-2016]

(a) 64 MPa (b) 48 MPa (c) 32 MPa (d) 16 MPa

IES-53c.

IES-54.

IES-54().

IES-54(ii).

Rails are laid such that there will be no stress in them at 24°C. If the rails are 32 m
long with an expansion allowance of 8 mm per rail, coefficient of linear
expansion a = 11 x 10-¢/°C and E = 205 GPa, the stress in the rails at 80°C will be
nearly [TES-2019 Pre.]

(a) 68 MPa (b) 75 MPa (c) 83 MPa (d) 90 MPa

The temperature stress is a function of [TES-1992]
1. Coefficient of linear expansion 2. Temperature rise 3. Modulus of elasticity
The correct answer is:

(a) 1 and 2 only (b) 1 and 3 only (c) 2 and 3 only (d)1,2and 3

An aluminium bar of 8 m length and a steel bar of 5 mm longer in length are kept at
30°C. If the ambient temperature is raised gradually, at what temperature the
aluminium bar will elongate 5 mm longer than the steel bar (the linear expansion
coefficients for steel and aluminium are 12 x 10-¢/cC and 23 x 10-¢/°C respectively?

(a) 50.7°C (b) 69.0°C (c) 143.7°C (d) 33.7°C [TES-2014]

The figure shows a steel piece of diameter 20 mm at A and C, and 10 mm at B. The
lengths of three sections A, B and C are each equal to 20 mm. The piece is held
between two rigid surfaces X and Y. The coefficient of linear expansion a = 1.2 X 10-
5/°C and Young’s Modulus E = 2 X 105 MPa for steel:[IES-2015]
When the temperature of this piece increases by

50°C, the stresses in sections A and B are

(2)120 MPa and 480 MPa B ficd
(b) 60MPa and 240MPa

(c) 120MPa and 120MPa |
(d) 60MPa and 120MPa [ 4

Impact loading

IES-55.

Assertion (A): Ductile materials generally absorb more impact loading than a brittle
material [TES-2004]
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Reason (R): Ductile materials generally have higher ultimate strength than brittle
materials
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is notthe correct explanation of A
(¢) Aistrue but R is false
(d) Aisfalse but R is true

IES-56. Assertion (A): Specimens for impact testing are never notched. [TES-1999]
Reason (R): A notch introduces tri-axial tensile stresses which cause brittle fracture.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R 1s NOTthe correct explanation of A
(¢) Aistrue but R is false
(d) Aisfalse but R is true

IES-56a. When a load of 20 kN is gradually applied at a particular point in a beam, it
produces a maximum bending stress of 20 MPa and a deflection of 10 mm. What will be
the height from which a load of 5 kN should fall into the beam at the same point if the
maximum bending stress is 40 MPa? [TES-2019 Pre.]
(a) 80 mm (b) 70 mm (c) 60 mm (d) 50 mm

Tensile Test

IES-57. During tensile-testing of a specimen using a Universal Testing Machine, the
parameters actually measured include [TES-1996]
(a) True stress and true strain (b) Poisson’s ratio and Young's modulus

(c) Engineering stress and engineering strain  (d) Load and elongation

IES-58. In a tensile test, near the elastic limit zone [TES-2006]
(a) Tensile stress increases at a faster rate
(b) Tensile stress decreases at a faster rate
(¢) Tensile stress increases in linear proportion to the stress
(d) Tensile stress decreases in linear proportion to the stress

IES-59. Match List-I (Types of Tests and Materials) with List-II (Types of Fractures) and
select the correct answer using the codes given below the lists:

ListI List-IT [TES-2002; IAS-2004]
(Types of Tests and Materials) (Types of Fractures)
A. Tensile test on CI 1. Plain fracture on a transverse plane
B. Torsion test on MS 2. Granular helecoidal fracture
C. Tensile test on MS 3. Plain granular at 45° to the axis
D. Torsion test on CI 4. Cup and Cone
5. Granular fracture on a transverse plane
Codes:
A B C D A B C D
(a) 4 2 3 1 (c) 4 1 3 2
(b) 5 1 4 2 (d) 5 2 4 1
IES-60. Which of the following materials generally exhibits a yield point? [TES-2003]
(a) Cast iron (b) Annealed and hot-rolled mild steel
(c) Soft brass (d) Cold-rolled steel
IES-61. For most brittle materials, the ultimate strength in compression is much large then
the ultimate strength in tension. The is mainly due to [TES-1992]

(a) Presence of flaws andmicroscopic cracks or cavities

(b) Necking in tension

(¢c) Severity of tensile stress as compared to compressive stress
(d) Non-linearity of stress-strain diagram

IES-61(i). A copper rod 400 mm long is pulled in tension to a length of 401.2 mm by applying a

tensile load of 330 MPa. If the deformation is entirely elastic, the Young’s modulus of
copper is [IES-2012]

For-2020 (IES,GATE, PSUs) Page 42 of 493 Rev.0



Chapter-1

IES-62.

IES-63.

IES-63a.

IES-64.

IES-65.

IES-66.

IES-67.

IES-68.

IES-69.
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(a) 110 GPA (b) 110 MPa (c) 11 GPa (d) 11 MPa
What is the safe static tensile load for a M36 x 4C bolt of mild steel having yield stress
of 280 MPa and a factor of safety 1.5? [IES-2005]
(a) 285 kN (b) 190 kN (c) 142.5 kN (d) 95 kN
Which one of the following properties is more sensitive to increase in strain rate?
[TES-2000]
(a) Yield strength (b) Proportional limit (c) Elastic limit (d) Tensile strength

Which of the following properties will be themeaningful indicator/indicators of
uniform rateof elongation of a test piece of a structuralmaterial before necking
happens in the testpiece? [IES-2017 Prelims]
1. Ductility

2. Toughness

3. Hardness

Select the correct answer using the code givenbelow:

(a) 1 only (b) 2 only (c) 3 only (d)1,2and 3

A steel hub of 100 mm internal diameter and uniform thickness of 10 mm was heated
to a temperature of 300°C to shrink-fit it on a shaft. On cooling, a crack developed
parallel to the direction of the length of the hub. Consider the following factors in

this regard: [TES-1994]

1. Tensile hoop stress 2. Tensile radial stress

3. Compressive hoop stress 4. Compressive radial stress

The cause of failure is attributable to

(a) 1 alone (b) 1 and 3 (¢)1,2and 4 (d) 2,3 and 4

If failure in shear along 45° planes is to be avoided, then a material subjected to
uniaxial tension should have its shear strength equal to at least [TES-1994]

(a) Tensile strength (b) Compressive strength

(c) Half the difference between the tensile and compressive strengths.
(d) Half the tensile strength.

Select the proper sequence [TES-1992]
1. Proportional Limit 2. Elastic limit 3. Yielding 4. Failure
(@)2,3,1,4 (b)2,1,3,4 ©1,3,2,4 1,2 38,4
Elastic limit of cast iron as compared to its ultimate breaking strength is

(a) Half (b) Double [TES-2012]

(c) Approximately (d) None of the above

Statement (I): Steel reinforcing bars are used in reinforced cement concrete.

Statement (II): Concrete is weak in compression. [IES-2012]

(a) Both Statement (I) and Statement (II) are individually true and Statement (II) is the correct
explanation of Statement (I)

(b) Both Statement (I) and Statement (II) are individually true but Statement (II) is not the
correct explanation of Statement (I)

(c) Statement (I) is true but Statement (II) is false

(d) Statement (I) is false but Statement (I) is true

Statement (I): Cast iron is good in compression.

Statement (II): It is extensively used in members of truss. [TES-2014]

(a)Both statement (I) and (II) are individually correct and statement (II) is the correct
explanation of statement (I)

(b)Both statement (I) and (II) are individually correct and statement (II) is not the correct
explanation of statement (I)

(c)Statement (I) is true but statement (II) is false.

(d)Statement (I) is false but statement (II) is true.
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Statement (I): The Bauschinger effect is observed in tension test of mild steel
specimen due to loss of mechanical energy during local yielding.

Statement (II): The Bauschinger effect is a function of section modulus of specimen
under test. [IES-2015]

(a) Both statement (I) and (II) are individually correct and statement (II) is the correct
explanation of statement (I)

(b) Both statement (I) and (II) are individually correct and statement (II) is not the correct
explanation of statement (I)

(c) Statement (I) is true but statement (II) is false.

(d) Statement (I) is false but statement (II) is true.

A 10 mm diameter bar of mild steel of elasticmodulus 200x10% Pa is subjected to a
tensileload of 50000 N, taking it just beyond its yieldpoint. The elastic recovery of
strain that wouldoccur upon removal of tensile load will be [IES-2017 Prelims]

(a) 1.38x 103 (b) 2.68 x 103 (c) 3.18 x 103 (d) 4.62 x10°3

Previous 25-Years IAS Questions

Stress in a bar due to self-weight

IAS-1.

IAS-2.

A heavy uniform rod of length 'L' and material density '6' is hung vertically with its
top end rigidly fixed. How is the total elongation of the bar under its own weight

expressed? [IAS-2007]
2617 or SI2 or
(@) ==& £ ©2=8 @ =8
E E V2E 2E

A rod of length '’ and cross-section area ‘A’ rotates about an axis passing through one
end of the rod. The extension produced in the rod due to centrifugal forces is (w is
the weight of the rod per unit length and @ is the angular velocity of rotation of the

rod). [TAS 1994]
12 2 13 2 13 3 E

(a) & ) LY 02 @ ==

gE 3gE gE o wl

Elongation of a Taper Rod

IAS-3.

A rod of length, ":" tapers uniformly from a diameter "D:' to a diameter "D:' and
carries an axial tensile load of "P". The extension of the rod is (E represents the

modulus of elasticity of the material of the rod) [TAS-1996]
4pP1 4PFE1 TEP1 TPl
(@ ——— (®) (c) (d) ———
7wED D, DD, 4D,D, 4ED D,

Poisson’s ratio

TIAS-4.

IAS-5.

In the case of an engineering material under unidirectional stress in the x-direction,
the Poisson's ratio is equal to (symbols have the usual meanings)
[TIAS 1994, IES-2000]

(@) 22 by 2 02 @2
& O O &

X X X X

Assertion (A): Poisson's ratio of a material is a measure of its ductility.

Reason (R): For every linear strain in the direction of force, Poisson's ratio of the

material gives the lateral strain in directions perpendicular to the direction of force.
[IAS-1999]

(a) Both A and R are individually true and R is the correct explanation of A
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(b) Both A and R are individually true but R is notthe correct explanation of A
(¢) Aistrue but R is false
(d) Aisfalse but R is true

Assertion (A): Poisson's ratio is a measure of the lateral strain in all direction
perpendicular to and in terms of the linear strain. [TAS-1997]
Reason (R): The nature of lateral strain in a uni-axially loaded bar is opposite to that
of the linear strain.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is notthe correct explanation of A

(¢) Aistrue but R is false

(d) Aisfalse but R is true

Elasticity and Plasticity

IAS-7.

A weight falls on a plunger fitted in a container filled with oil thereby producing a
pressure of 1.5 N/mm? in the oil. The Bulk Modulus of oil is 2800 N/mm?2. Given this
situation, the volumetric compressive strain produced in the oil will be:[IAS-1997]

(a) 400 x 10-¢ (b) 800 x 10¢ (c) 268 x 108 (d) 535 x 106

Relation between the Elastic Modulii

IAS-8.

IAS-9.

IAS-10.

IAS-11.

IAS-12.

IAS-13.

IAS-14.

IAS-15.

IAS-16.

For a linearly elastic, isotropic and homogeneous material, the number of elastic

constants required to relate stress and strain is: [IAS 1994; IES-1998]
(a) Two (b) Three (c) Four (d) Six

The independent elastic constants for a homogenous and isotropic material are
a@EGK,v b)E, G, K ©E,G,v @DE,G [TAS-1995]
The unit of elastic modulus is the same as those of [TAS 1994]
(a)Stress, shear modulus and pressure (b) Strain, shear modulus and force

(c) Shear modulus, stress and force (d) Stress, strain and pressure.

Young's modulus of elasticity and Poisson's ratio of a material are 1.25 x 105 MPa and
0.34 respectively. The modulus of rigidity of the material is:
[IAS 1994, IES-1995, 2001, 2002, 2007]

(a) 0.4025 x 105 MPa (b) 0.4664 X 105 MPa
(c) 0.8375 x 105 MPa (d) 0.9469 x 105 MPa
The Young's modulus of elasticity of a material is 2.5 times its modulus of rigidity.The
Posson's ratio for the material will be: [TAS-1997]
(a) 0.25 (b) 0.33 (c) 0.50 (d) 0.75
In a homogenous, isotropic elastic material, the modulus of elasticity E in terms of G
and K is equal to [TAS-1995, IES - 1992]
G+3K 3G+K 9KG 9KG
(@) ———— (b) (c) (d)
9KG 9KG G+3K K+3G

The Elastic Constants E and K are related as (x is the Poisson’s ratio) [IAS-1996]
@E=2k(1-2u) b) E=3k(1-2u) @©E=3k(1+ u) (E=2KQ+2u)

For an isotropic, homogeneous and linearly elastic material, which obeys Hooke's
law, the number of independent elastic constant is: [IAS-2000]
(a) 1 (b) 2 (c) 3 (d) 6

The moduli of elasticity and rigidity of a material are 200 GPa and 80 GPa,
respectively. What is the value of the Poisson's ratio of the material? [IAS-2007]
(a) 0-30 (b) 026 (c) 025 () 024
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Stresses in compound strut

TAS-17. The reactions at the rigid supports at A and B for the bar loaded as shown in the

figure are respectively. [TES-2002; IAS-2003]
(a) 20/3 kN,10/3 Kn (b) 10/3 kN, 20/3 kN (¢c) 5kN, 5 kN (d) 6 kN, 4 kN
A

3 6 B

1 L~

- =

; ————> 10kN [

A L~

; L~

1m 2m -
g s #

Thermal effect

IAS-18. A steel rod 10 mm in diameter and 1m long is heated from 20°C to 120°C, E = 200 GPa
and a = 12 x 106 per °C. If the rod is not free to expand, the thermal stress developed

is: [IAS-2003, IES-1997, 2000, 2006]
(a) 120 MPa (tensile) (b) 240 MPa (tensile)
(c) 120 MPa (compressive) (d) 240 MPa (compressive)

IAS-19. A. steel rod of diameter 1 cm and 1 m long is heated from 20°C to 120°C. Its
a=12x10"°/K and E=200 GN/m2. If the rod is free to expand, the thermal stress

developed in it is: [IAS-2002]
(a) 12 x 104 N/m?2 (b) 240 kN/m?2 (c) zero (d) infinity
IAS-20. Which one of the following pairs is NOT correctly matched? [TAS-1999]

(E = Young's modulus, a = Coefficient of linear expansion, T = Temperature rise, A =
Area of cross-section, 1= Original length)

(a) Temperature strain with permitted expansion 6 ... (all-0)

(b) Temperature stress .. alE

(c) Temperature thrust . aTEA
E(aTl-5)

(d) Temperature stress with permitted expansion 0 ...

[

Impact loading

IAS-21. Match List I with List II and select the correct answer using the codes given below

the lists: [TAS-1995]
List I (Property) List II (Testing Machine)
A. Tensile strength 1. Rotating Bending Machine
B. Impact strength 2. Three-Point Loading Machine
C. Bending strength 3. Universal Testing Machine
D. Fatigue strength 4. Izod Testing Machine
Codes: A B C D A B C D
(a 4 3 2 1 (b) 3 2 1 4
() 2 1 4 3 (d) 3 4 2 1

Tensile Test

IAS-22. A mild steel specimen is tested in tension up to fracture in a Universal Testing
Machine. Which of the following mechanical properties of the material can be

evaluated from such a test? [TAS-2007]
1. Modulus of elasticity 2. Yield stress 3. Ductility

4. Tensile strength 5. Modulus of rigidity

Select the correct answer using the code given below:

()1, 3,5and 6 (b) 2,3,4and 6 (©)1,2,5and 6 (d)1,2,3and 4
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IAS-23. In a simple tension test, Hooke's law is valid upto the [IAS-1998]
(a) Elastic limit (b) Limit of proportionality (c) Ultimate stress (d)Breaking point

IAS-24. Lueder' lines on steel specimen under simple tension test is a direct indication of
yielding of material due to slip along the plane [TAS-1997]
(a) Of maximum principal stress (b) Off maximum shear
(c) Of loading (d) Perpendicular to the direction of loading

IAS-25. The percentage elongation of a material as obtained from static tension test depends
upon the [TAS-1998]
(a) Diameter of the test specimen (b) Gauge length of the specimen
(c) Nature of end-grips of the testing machine (d) Geometry of the test specimen

IAS-26. Match List-I (Types of Tests and Materials) with List-II (Types of Fractures) and
select the correct answer using the codes given below the lists:

List I List-I1I [IES-2002; IAS-2004]
(Types of Tests and Materials) (Types of Fractures)
A. Tensile test on CI 1. Plain fracture on a transverse plane
B. Torsion test on MS 2. Granular helecoidal fracture
C. Tensile test on MS 3. Plain granular at 45° to the axis
D. Torsion test on CI 4. Cup and Cone
5. Granular fracture on a transverse plane

Codes: A B C D A B C D

(a 4 2 3 1 (¢ 4 1 3 2

b)) 5 1 4 2 (d) 5 2 4 1

IAS-27. Assertion (A): For a ductile material stress-strain curve is a straight line up to the
yield point. [TAS-2003]
Reason (R): The material follows Hooke's law up to the point of proportionality.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is notthe correct explanation of A
(¢) Aistrue but R is false
(d) Aisfalse but R is true

IAS-28. Assertion (A): Stress-strain curves for brittle material do not exhibit yield point.
[TAS-1996]
Reason (R): Brittle materials fail without yielding.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R 1s NOTthe correct explanation of A
(¢) Aistrue but R is false
(d) Aisfalse but R is true

IAS-29. Match List I (Materials) with List II (Stress-Strain curves) and select the correct
answer using the codes given below the Lists: [IAS-2001]
List I List IT

A Mild Steel L

E. Pure copper

C. Cast iron

D. Pure ahiminfizm

NN
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Codes: A B C D A B C D
(@ 3 1 4 1 (b) 3 2 4 2
(¢ 2 4 3 1 (d) 4 1 3 2
IAS-30. The stress-strain curve of an ideal elastic strain hardening material will be as
@ I [ I
& —» g — § — E —
@ ®) © @

[IAS-1998]
IAS-31. An idealised stress-strain curve for a perfectly plastic material is given by

ﬂ—“ Fell g o
@ () © @ |
£’ = %

£
[TAS-1996]
TAS-32. Match List I with List II and select the correct answer using the codes given below
the Lists: [IAS-2002]
List I List IT
A. Ultimate strength 1. Internal structure
B. Natural strain 2. Change of length per unit instantaneous length
C. Conventional strain 3. Change of length per unit gauge length
D. Stress 4. Load per unit area
Codes: A B C D A B C D
(@ 1 2 3 4 (b) 4 3 2 1
© 1 3 2 4 (d) 4 2 3 1
IAS-33. What is the cause of failure of a short MS strut under an axial load? [IAS-2007]
(a) Fracture stress (b) Shear stress (c) Buckling (d) Yielding
IAS-34. Match List I with List IT and select the correct answer using the codes given the lists:
[TAS-1995]
ListI List II
A. Rigid-Perfectly plastic
1. -
E
B. Elastic-Perfectly plastic 9 o
e
ol
C. Rigid-Strain hardening 3 prr——=
E
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D. Linearly elastic

o
4,
Codes: A B C D A B C D
(a 3 1 4 2 (b) 1 3 2 4
(¢ 3 1 2 4 (d) 1 3 4 2
IAS-35. Which one of the following materials is highly elastic? [TAS-1995]
(a) Rubber (b) Brass (c) Steel (d) Glass

IAS-36. Assertion (A): Hooke's law is the constitutive law for a linear elastic material.

Reason (R) Formulation of the theory of elasticity requires the hypothesis that there
exists a unique unstressed state of the body, to which the body returns whenever all
the forces are removed. [TAS-2002]

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is notthe correct explanation of A

(¢) Aistrue but R is false

(d) Aisfalse but R is true

TAS-37. Consider the following statements: [TAS-2002]
1. There are only two independent elastic constants.
2. Elastic constants are different in orthogonal directions.
3. Material properties are same everywhere.
4. Elastic constants are same in all loading directions.
5. The material has ability to withstand shock loading.

Which of the above statements are true for a linearly elastic, homogeneous and
isotropic material?

(a)1,3,4and 5 (b) 2,3 and 4 (¢)1,3and 4 (d) 2 and 5
IAS-38. Which one of the following pairs is NOT correctly matched? [TAS-1999]

(a) Uniformly distributed stress .... Force passed through the centroid of the
cross-section

(b) Elastic deformation Work done by external forces during
deformation is dissipated fully as heat

(c) Potential energy of strain Body is in a state of elastic deformation

(d) Hooke's law Relation between stress and strain

IAS-39. A tensile bar is stressed to 250 N/mm? which is beyond its elastic limit. At this stage

the strain produced in the bar is observed to be 0.0014. If the modulus of elasticity of
the material of the bar is 205000 N/mm2 then the elastic component of the strain is
very close to [TAS-1997]

(a) 0.0004 (b) 0.0002 (c) 0.0001 (d) 0.00005

OBJECTIVE ANSWERS

GATE-1. Ans. (¢c) oL = % or 6L w é [AsP, L and A is same]

5L)mildsteel _ Eq :m . (5L) > (5L)
s al MS

(oL),, E. 206
GATE-1(i) Ans. (a)

GATE-2. Ans. (a) oL =

PL  (200x1000)x2
AE ~ (0.04x0.04)x 200 x10°

m=1.25mm

GATE-2a. Ans. 0.81 mm (Range given 0.80 to 0.82 mm)
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:%:(Pj£=ax£=270MPaxM=0.81mm

E E 100x10° MPa
50 %1000
50 x50

The stress in upper bar = 250 x1000 =25 N/ mm?
100 x100

A

GATE-2b. Ans. (c)The stress in lower bar = =20 N/ mm?

Thus the maximum tensile anywhere in the bar is 25 N/ mm®
GATE-2¢. Ans. (d)There is no eceentricity between the XY segment and the load. So, it is subjected to
axial force only. But the curved YZ segment is subjected to axial force, shear force and bending

moment.

—£,  —(~0.015/50) _

GATE-2d. Ans. 0.29 to 0.31 Poisson'sratio (u) = 0.30
£ 0.5/500

GATE-3. Ans. (b)

€,=In(1 +€,) = In(1 + 0.35) = 0.3
But at UTS n =€
o = 0,(1+0.3) = 400(1 + 0.35) u"; Tensile strengh {necking)
= 540 MPa th
]
540 = K(0.3)%3 5
z
=
True strain(g)
GATE-4. Ans. (d)
— —-1 mm..l-t— Tensile stress

=4 A(Hmating
| —Pp - —
= ]

Compressive --i ~tFman |-<—
stress

A cantilever-loaded rotating beam, showing the normal distribution of surface stresses. (i.e.,
tension at the top and compression at the bottom)

l=— Residual stress

--iﬂ'R
— +
Plastic
S = — s e = daformation -
in surface
o i

—-P-]D'R-—-l—

The residual compressive stresses induced.

S~ —b—| |-— Trnax + U8

—i--l TFrnaw + T8 |-:—

Net stress pattern obtained when loading a surface treated beam. The reduced magnitude of the
tensile stresses contributes to increased fatigue life.

GATE-5. Ans. (d)

GATE-6. Ans. (d)

GATE-7. Ans. 1.9 to 2.1 Actual answer is 2
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GATE-7@). Ans. (d) For longitudinal strain we need Young's modulus and for calculating transverse strain
we need Poisson's ratio. We may calculate Poisson's ratio from £ =2G(1+ u) for that we need

Shear modulus.
GATE-7(ii) Ans.0.35 t0 0.36 Use E=2G (1 +pn ), G/E =0.35714
GATE-8. Ans. (a)

GATE-9. Ans. (a) Remember E=2G(1+u)=3K(1-2u) = IKG

3K+G

GATE-9(i) Ans.(a)
GATE-10. Answer: 77
Modulus of rigidity (G)

o=FE¢
or200=E x 0.001
200 3
Or E=———=200%x10° MPa = 200GPa
0.001

E 200
20+ ) 2(1+0.3)
GATE-11. Ans. (b) First draw FBD of all parts separately then

E=2GA+u)or G= =T77GPa

SON 50N
mﬂﬁl I_]_ED N 150 |415—D i ]
PL
Total change in length = —
g gth=")" 1E
GATE-12. Ans. (a)
63kN B3kM 28kM 28kN 21kN 21k
il e -— oot i, —_— -
P Q Q R R S
F.B.D
Gop = == 2800015, _ 40MPa
A 700
GATE-13. Ans. 4.0 (Range given 3.9 to 4.1)
A B C
P.F . ( P-F F ) . F
] \/ i
(P-F)L FL P
O0,.(Comp.) =0, . (Tensile Or ——=— Or —=4.0
w(COmp.) =0y ) Ax3E  AE F

GATE-13a. Ans. (d)

R R P-R P-R
-'ﬁ F [— =
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£, = R =10"° (Tensile)
AE

st
st

R=10°x1x210x10° N =210 kN

P-R
and &,=——=10" (Compressive)

Al

10°x1x70x10°

P-210=
1000
P =280kN
GATE-14. Ans. (c)If the force in each of outer rods is P, and force in the central rod is P,, then
2P, +P, =50 ...(0)
Also, the elongation of central rod and outer rods is same.
POLO _ PC LC
AE AE
P,x2L P,xL
= =
2A 3A
= P, =3P, ...(10)

Solving (i) and (ii) we get
P, =30kN and P, =10kN

GATE-15.Ans.(a) Thermal stress will develop only when you prevent the material to contrast/elongate. As
here it is free no thermal stress will develop.

GATE-16. Ans. (a) AV _p _a(1+aT)’ -a°

vV K a
Or+ —3aT

3(1 —21})

a(AT)E a(AT)E .
rp= orstress(c)=—p =— i.e.compressive
(1-2v) (1-2v)
3
GATE-16a. Ans. (60) AV _p _(1+alT) &, \p

v K a

Or p=3aATK =3x1x10"° ><(42—32)><200><103 MPa = 60 MPa
Volumetric stress is pressure.

Same question was asked in IES-2003 please refer question no. IES-48 in this chapter.
GATE-17. Ans. (¢)

Temperature stress = o TE=12x107° x10 x 2x10° = 24 MPa

GATE-18.Ans. 499 to 501 o =aAtE = (lx IO_S)X 250x (200>< 109) =500x10° Pa =500 MPa

GATE-19.Ans.(¢)
GATE-20.Ans. (a)
GATE-20a.Ans. 240 MPa (Compressive) Range given (239.9 MPa to 240.1 MPa)

LaAT—5=FL o LaaT—s=9L
AFE E

orJ:aATE—g—E:IO’S x200x200x10° —£x200x103
L 250
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GATE-20b. Ans. 220 Range (218 to 222)

GATE-20c. Ans. Range (1.70 to 1.72)

GATE-21. Ans. (a) Creep is due to constant load but depends on time.

GATE-22.Ans. (¢)
GATE-22a. Ans. (c)

GATE-22b. Ans. (d) £ = %, In the plastic zone Ag = 0 , Therefore E = Infinite
£
GATE-23. Ans. (b)

GATE-23(@). Ans. (d)
GATE-23b. Ans. (a)

GATE-23c. Ans. (210) Initial loading upto yield point and then unloading to zero load results in cold working of
the material. As a result, Yield stress increases on immediate next reloading. Since it is ideal elastic-
plastic, material yield stress on reloading of the specimen remains at 210 MPa.

GATE-24. Ans. 95.19

100

True strain = In——=0.5129
95

o =500x(0.5129)"! =371.51
Upto elastic limits using Hooke's Law
371.51x10° x100

Al
Al =0.18575mm (considering this for elastic recovery)

oxl

E= or 200x10° =

This is elastic component and after release of the compressive load this

amount of recovery takes place.

This will be added to 95mm. Therefore, final dimension = 95.18575mm
GATE-25.Ans. (c)
GATE-26. Ans. (b)
GATE-27. Ans.(c) Pretension increase stiffness of system.
GATE-28. Ans. 13

15 _15x107
K, P P
=5—’”:5><10_8 m/ N
P

m/N

Total Compliance(C, ) =

Machine Compliance(C,, )= KL
. . |
Analyzed material Compliance(C,)=—=-2m/N
K, P
C.=¢C,+C,
-3
or ISXIO —5x 0—8+ 5,4

40x10° 40x10°
6,=0.013m=13mm

.. The strain at failure= % x100% = % x100% =13%

For-2020 (IES,GATE, PSUs) Page 53 of 493 Rev.0



Chapter-1 Stress and Strain
2
WL 7D xLx pxgxL
IES-1.Ans. (d) 6=—— =% or s w L
2AE zD?
2x 2 xE

IES-2. Ans. (¢)
IES-3. Ans. (b)

IES-3a.Ans. (¢) After application of load rigid beam will remain horizontal, therefore

elongation of steel and aluminium will be same.
IES-4. Ans. (d)

IES-5. Ans. (c¢)

IES-6. Ans. (c¢)

IES-7. Ans. (a)

IES-7a. Ans. (d)

IES-7b. Ans. (b)

@ -

by reducing shank dia.

equal to d. (core dia.)

d

c

AAAAAAAAAAA
YVVVVYVVYVY

AAANAAAAAA
YVVYYVYYVYVYY

Non-uniform strength

% @

AR RRAR AR

yyvyy yyvy

AAAAA, AAAA.
YYVVVYVVVY

Uniform strength

IES-8. Ans. (b) Elongation of a taper rod (5I) = PL
%d1d2E
or a _ (%) =(D/3]=g
), (d,), \D/2) 3
IES-9. Ans. (c) Actual elongation of the bar (41)_, = PL__ PL
(”dpsz (”X1.1D><O.9DJE
4 4
Calculated elongation of the bar (51)C = %
@ 7D
2 xE
a)  —(dl 2
.'.Error(%)=%x100 =[11DDW_1JX1OO%=1%
cal . xXU.
PL

TES-10. Ans. (d) Actual elongation of the bar (51) = =

IES-11. Ans. (b)
IES-11@3). Ans. (c)
IES-11(ii). Ans(c)
4Pl

Extension of tapered rod =————
P 7ED,D,
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Chapter-1 Stress and Strain S K Mondal’s

4Pl
7ED,D,
Pl

nD?*/4xE
IES-12. Ans. (a)
IES-13. Ans. (c¢) Theoretically 1< x#<1/2 but practically 0 < u <1/2

IES-14. Ans. (¢)
IES-15. Ans. (a) If Poisson's ratio is zero, then material is rigid.
IES-16. Ans. (a)
IES-17. Ans. (d) Note: Modulus of elasticity is the property of material. It will remain same.
IES-18. Ans. (a)
IES-19. Ans. (a) Strain energy stored by a body within elastic limit is known as resilience.
IES-19a. Ans. (d)
IES-19b. Ans. (b) Plastic deformation
Following the elastic deformation, material undergoesplastic deformation.
Also characterized by relation between stress and strain atconstant strain rate and temperature.
Microscopically...it involves breaking atomic bonds,moving atoms, then restoration of bonds.
Stress-Strain relation here is complex because of atomicplane movement, dislocation movement,
and the obstaclesthey encounter.
Crystalline solids deform by processes — slip and twinningin particular directions.
Amorphous solids deform by viscous flow mechanismwithout any directionality.
Equations relating stress and strain are called constitutiveequations.
A true stress-strain curve is called flow curve as it gives thestress required to cause the material to
flow plastically tocertain strain.
IES-20. Ans. (c¢)
IES-21. Ans. (b)
IES-22. Ans. (¢)
IES-22a. Ans. (d) Shaft means torsion and added bending load produce a reversed state of stress.
IES-22b.Ans. (a)Endurance limit is the design criteria for cyclic loading.
IES-23. Ans. (d)
IES-24. Ans. (¢) A polished surface by grinding can take more number of cycles than a part with rough
surface. In Hammer peening residual compressive stress lower the peak tensile stress
IES-25. Ans. (a)
IES-26. Ans. (¢)
IES-26a.Ans. (d)Isotropic material is characterized by two independent elastic constant.
IES-27. Ans. (¢)
IES-28. Ans. (d)
IES-28a.Ans. (b)
IES-29. Ans. (d)
IES-30. Ans. (a)
IES-31. Ans.(b) £ =2G(1+ p) or 1.25x105 = 2G(1+0.34) or G = 0.4664 x 105> MPa
IES-31(i). Ans. (d)
TES-31(ii). Ans(d) G =70GPa, K= 150GPa We know,
E=3K(1-2u)=3x150(1-2u)=2G(1+ 1) =2x70(1+ w)
On solving the above equations we get, 1t =0.3& E =182GPa

IES-31(iii). Ans. (b)
IES-32. Ans. (c)

Ratio = =2

IES-33. Ans. (d) E = 26 (1+ ) = 3K (1-2u) = L =
9KG
IES-34. Ans. (&) E=26(1+ ) =3K(1-21) = - o
9KG
IES-35. Ans.(c)E = 2G(1+ ) =3K(1-2u) = Tae
+

the value of 4 must be between 0 to 0.5 so E never equal to G but if = % then

E=ksoans.isc
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IES-36. Ans. (b) Use E =2G(1+ u)

E 200
IES-37. Ans. (a) E = 2G(1 G- - — 80GN/m?
ns. (@) (tru) or 6 =50 ) " 2x(1+025) "

IES-37a. Ans. (b)

TES-38. Ans. (d) Under plane stress condition, the strain in the direction perpendicular to the plane is not
zero. It has been found experimentally that when a body is stressed within elastic limit, the
lateral strain bears a constant ratio to the linear strain.

IES-38(i). Ans. (b)

; -5
TES-38a. Ans. (b) Axial strain (g,) = —eralStrain _ 80197 _ 500 x 105
Poisson’s Ratio 0.3
_ o, 300x 10° _ 180 GP
e, 200x10-5 ¢
PL L 305
1ES-39. Ans. (d) 5:—:0x—:2 —mm:0.765mm ~0.77Tmm
AE 110x1
IES-39a. Ans. (b) Total load(P) =8 x oxZ ord \/ \/980175 =22.25mm
2ro 27 x315
TES-39b. Ans. (a)
L . . . EWW/
we kIlOW 5 AE 5 = é‘new’ Pold = Bvew’Lold = Lnew’Eold :T
PL PL
(Ejozd = (Ejnew or A()IdEold = AnewEnew
E A
_ = ZTnew — — 2
72 A, =4, =2x4,, =2x10
@’ =2x10>=a_ =~2x10=14mm
PL PL

IES-39c.Ans. (b),— = 7 ordg = Ay ord? = D?— (2)? ord =2

IES-40.Ans. (¢) Compatibility equation insists that the change in length of the bar must be compatible

with the boundary conditions. Here (a) is also correct but it is equilibrium equation.
IES-40(i) Ans. (a) Elongation will be same for this composite body

PL PL o. O o, _100
¢ =35 =t =S5 =_F¢ O' = 50N/mm

AE AE E E _E 2E
IES-41. Ans. (a)
IES-42. Ans. (b) First draw FBD of all parts separately then

100N

) ey e

Total change in length = Z —

-42a.Ans. (d) 5) + (- + 5)]=- -6
IES-42a.Ans (d,lO < 10-6x200 x10° [ (200 x 0.5) + (-200 x 1)+ (100 X% 0.5) ]=- 25%X10"° m

IES-42b. Ans. (a)
A B B G c D

10 kN 10 kN 8 kN 8kN 5y 5kN
o gf— bR o f— to—r o — =
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5Tutal = §AB + 530 + 501)

_(PL) (PL) (PL
AE )y \AE ), \AE ),

B 10><103x2000+8><103><1000+5><103><3000mm

(ﬂ-x32jx(205x103)
4
=29.68mm
IES-43. Ans. (a) Elongation in AC = length reduction in CB
Ryx1 Rgx2
AE  AE

And Ra+Rs=10
IES-43(i) Ans. (b)
IES-44. Ans. (b)
IES-45. Ans. (d)
IES-46. Ans. (d) If we resist to expand then only stress will develop.
IES-47. Ans. (d)
TES-48. Ans. (b) AV _o=(p) _a'(1+0T)’ ~a°

74 K

a3

or g =3aT
3(1—27)
IES-49. Ans. (¢)
IES-49(i). Ans. (c¢)

IES-50. Ans. (d) aEAt = (12x107°)x (200 x10°) x (120 - 20) = 240MPa
It will be compressive as elongation restricted.
IES-50a.Ans. (¢)L a - AT = % or P=a-AT-AE =10%x 107° x 50 x 20 X 10™* x 200 x 10°N = 200kN

IES-51. Ans. (a) co-efficient of volume expansion (y) = 3xco —efficient of linear expansion(«)

IES-52. Ans. (b)
IES-53. Ans. (b) Let compression of the spring =x m
Therefore spring force = kx kN
Expansion of the rod due to temperature rise = LaAt

. ) (kX) x L
Reduction in the length due to compression force = AE
(kX) x L
Now LaAt —~———=x
AE
-6
Or X = 0.5x12.5x10™ x 20 _0.125mm
50x0.5
T 00107
’”# x 200 x10°
.. Compressive stress = —l%( = —M =-0.07945MPa

7 x0.0102
4
IES-53a. Ans. (d)

IES-53b. Ans. (d) Free expansion=L. a. AT =10 x 103x 12 X 107 x 40 = 4.8 mm
Permitted expansion = 4 mm, Expansion resisted = 0.8 mm
PL oL SE  0.8x200x10°
O0=—=—oro=—=————MPa=16 MPa
AE E L 10000
IES-53c. Ans. (b)
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Free Expansion = LaAT
Permitted Expansion= 6

Expansion Resisted = LaAT — 6 = %

or LaAT -6 = (7£
E

or O':aATE—é'xE:llxlO’() ><(80—24)><205><103 —8x—
L 32000

TES-54. Ans. (d) Stress in the rod due to temperature rise = (aAt) xE
IES-54(i) Ans. (c) LAlaAlAT - LsasAT =10mm

8000x23x10°x AT —8005x12x10° x AT =10mm

AT =113.7°C .. Answer =113.7+30=143.7°C
TES-54(ii) Ans. (b)
IES-55. Ans. (¢)

IES-56. Ans. (d) A is false but R is correct.
IES-56a. Ans. (c)
P=20 kN

‘ !

e —

Static Load = 20 kN
Oguic = 20MPa and 6

Static = 10 mm
If Static Load = 5kN

O guic = 20 xiMPa =5MPa and o

Static = 10mmxi =2.5mm

[P=5kN

A

& )
I
| L >
2h
Glmpact = GStatic x 1+ 1+
§Static
2h
or 40=5x|1+,/1+—
2.5
or h=60mm
IES-57. Ans. (d)
IES-58. Ans. (b)
IES-59. Ans. (d)
TES-60. Ans. (b)
TIES-61. Ans. (a)
TES-61(i). Ans. (a)
2
IES-62. Ans. (b) 0, = or W =g, x "9
zd 4
4
2 2
= N _gexmxd 280xmx367\_ 190kN
fos fosx4 1.5x4
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IES-63. Ans. (b)

IES-63a. Ans. (b)

IES-64. Ans. (a) A crack parallel to the direction of length of hub means the failure was due to tensile hoop
stress only.

IES-65. Ans. (d)

IES-66. Ans. (d)

c A True stress-strain curve

Engineering stress-strain curve

» E

IES-67. Ans. (c)

IES-68. Ans. (¢)

IES-69. Ans. (c) Truss members will be subjected to tension and cast iron is weak in tension.
IES-70. Ans. (¢)

P . o
IES-71. Ans. (¢)Stress(o) = " Elastic Strain(e;) = .

1AS

. . wL (SALg)L &I%g
IAS-1. Ans. (d) Elongation due to self weight = = =
2AE 2AE 2F

IAS-2. Ans. (b)

TIAS-3. Ans. (a)The extension of the taper rod = P
7
(4 DD, j E
IAS-4. Ans. (a)
IAS-5. ans. (d)
IAS-6. Ans. (b)
IAS-7. Ans. (d) Bulk modulus of elasticity (K) = E oreg, = E = 1—5 =535%x107"°
£ K 2800

v

IAS-8. Ans. (a)

IAS-9. Ans. (d)

IAS-10. Ans. (a)

IAS-11. Ans.(b) £ =2G(1+ p) or 1.25x105 = 2G(1+0.34) or G = 0.4664 x 105> MPa

E E 2.5
IAS-12. Ans. (a)E 2G(1+,u) =>1+u G =>u (ZG 1) ( 5 1] 0.25
IAS-13. Ans. (¢)
IAS-14.Ans. (b)) E=2G (1 + x)=3k (1-2u)
IAS-15. Ans. (b) E, G, K and p represent the elastic modulus, shear modulus, bulk modulus and poisons
ratio respectively of a ‘linearly elastic, isotropic and homogeneous material.” To express the
stress — strain relations completely for this material; at least any two of the four must be

9KG
known. E = 2G (1+ 1) = 3K (1-31) =
nown (1 u) =3K(1=3u) =535
E 200
TAS-16. Ans. E=2G (1+ =—-1= -1=0.25
ns- (©) (e aD o = ™ T 280

IAS-17. Ans. (a) Elongation in AC = length reduction in CB
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IAS-18

IAS-19.
IAS-20.

IAS-21

IAS-24

IAS-31

TAS-34.
TAS-35.

TAS-36.
TIAS-37.
TAS-38.
TAS-39.

Ryx1 Rgx2

AE AE
And Ra+ Rs=10

. Ans. (d) aEAt = (12x107°)x (200 x10°)x (120 - 20) = 240MPa

It will be compressive as elongation restricted.
Ans. (¢) Thermal stress will develop only if expansion is restricted.
Ans. (a) Dimensional analysis gives (a) is wrong

. Ans. (d)
TIAS-22.
TIAS-23.

Ans. (d)
Ans. (b)

. Ans. (b)
TAS-25.
TAS-26.
TIAS-27.
TAS-28.
TAS-29.
TIAS-30.

Ans. (b)
Ans. (d)
Ans. (d)
Ans. (a) Up to elastic limit.
Ans. (b)
Ans. (d)

. Ans. (a)
IAS-32.
IAS-33.

Ans. (a)

Ans. (d) In compression tests of ductile materials fractures is seldom obtained. Compression is
accompanied by lateral expansion and a compressed cylinder ultimately assumes the shape of a
flat disc.

Ans. (a)

Ans. (c)Steel is the highly elastic material because it is deformed least on loading, and regains its
original from on removal of the load.

Ans. (a)

Ans. (a)

Ans. (b)

Ans. (b)
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Previous Conventional Questions with Answers

Conventional Question IES-2010

Q. If a load of 60 kN is applied to a rigid
bar suspended by 3 wires as shown
in the above figure what force will
be resisted by each wire?

UL L L

§\\\\\\\\\\\

N

&\T\\\\\\\\\_

2

N

/774

The outside wires are of Al, cross-
sectional area 300 mm? and length 4
m. The central wire is steel with area
200 mm?2 and length 8 m-

Initially there is no slack in the

wires E=2x10°N/mm? for Steel
=0.667x10°N / mm? for Aluminum

- Alum, wircs

- Steel wire

,l ]

60 kN

[2 Marks]

Ans.
[/ /7 /72727

AN\N
AN\

L L/ A4

> Aluminium wire

/\FSt Fai
T &éa Steel wire

|
I 60kN

Fai

P=60 kN

a,; =300mm? 1,;, =4m
a, =200mm? 1, =8m
E,; =0.667x10°N / mm?
E, =2x10°N/mm?

Force balance along vertical direction
2F,; +F,, =60 kN 1)
Elongation will be same in all wires because rod is rigid remain horizontal after loading

Fag xla; _ Foplg @

aAl 'EAI ast -Est

Fy, x4 K x8
300x0.667x10° 200x2x10°
_ 60x10°

From equation (1) K = =19.99 kN or 20 kN

3.001
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F,; =20 kN
Answer.
F,= 20 kN

Conventional Question GATE

Question: The diameters of the brass and steel segments of the axially loaded bar shown in
figure are 30 mm and 12 mm respectively. The diameter of the hollow section of the
brass segment is 20 mm.

Determine: (i) The maximum normal stress in the steel and brass (ii) The displacement of the free end ;
Take Es = 210 GN/m?2 and Ep = 105 GN/m?2

Z

7

I ////"I/// ?

v

”

7

A  Steel //z’//ff//j
B  Brass c D%

le— 0.15 m—sfe— 0.2 m ———}+ 0.125 m—|

Answer: A, :%x(12)2 —3627mm? =367 x10°m?
(A )ge :%X(30)2 =2257mm? =2257x10°m?

(As)eo Z%X(302 —202) =1257mm?* = 1257 x107°m?

(1) The maximum normal stress in steel and brass:

3
o, = 10 40-5MN/m? = 88.42MN / m?
367 x10
5x10°
=200 10°MN/m? = 7.07MN/m?
(%0)ec = 2257 107 * " "
5x10°

(F)ep =Wx10’6MN/m2 —12.73MN / m?
T X

(1) The displacement of the free end:
ol = (5ls )AB + (5Ib )BC + (5Ib )CD

__8842x015  7.07x0.2 _ 12.73x0.125 [ alj
210x10°x10°  105x10°x10°  105x10°x10°

=9.178x10°m = 0.09178 mm

Conventional Question IES-1999
Question: Distinguish between fatigue strength and fatigue limit.
Answer: Fatigue strength as the value of cyclic stress at which failure occurs after N cycles. And

fatigue limit as the limiting value of stress at which failure occurs as N becomes very large
(sometimes called infinite cycle)

Conventional Question IES-1999

Question: List at least two factors that promote transition from ductile to brittle fracture.
Answer: 1) With the grooved specimens only a small reduction in area took place, and the
appearance of the facture was like that of brittle materials.
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(i) By internal cavities, thermal stresses and residual stresses may combine with the effect
of the stress concentration at the cavity to produce a crack. The resulting fracture will
have the characteristics of a brittle failure without appreciable plastic flow, although
the material may prove ductile in the usual tensile tests.

Conventional Question IES-1999

Question:
Answer:

Distinguish between creep and fatigue.

Fatigue is a phenomenon associated with variable loading or more precisely to cyclic stressing
or straining of a material, metallic, components subjected to variable loading get fatigue,
which leads to their premature failure under specific conditions.

When a member is subjected to a constant load over a long period of time it undergoes a slow
permanent deformation and this is termed as "Creep". This is dependent on temperature.

Conventional Question IES-2008

Question:

Answer:

What different stresses set-up in a bolt due to initial tightening, while used as a

fastener? Name all the stresses in detail.

(1) When the nut is initially tightened there will be some elongation in the bolt so tensile
stress will develop.

(i1) While it i1s tightening a torque across some shear stress. But when tightening will be
completed there should be no shear stress.

Conventional Question IES-2008

Question:

Answer:

A Copper rod 6 cm in diameter is placed within a steel tube, 8 cm external diameter
and 6 cm internal diameter, of exactly the same length. The two pieces are rigidly
fixed together by two transverse pins 20 mm in diameter, one at each end passing
through both rod and the tube.

Calculated the stresses induced in the copper rod, steel tube and the pins if the
temperature of the combination is raised by 50°C.

[Take Es=210 GPa, o, = 0.0000115/° C ; Ec=105 GPa, o, = 0.000017/° C]

/—Stoel tube Pin { 20 mm ¢)

D 2= Mt
rd> w6 Y 2 3.2

Area of copper rod(A,) = =—|—| m” =2.8274x10"m
4 41100

2 2 2
Area of steel tube (A) = md =Z{ 8 ] —[ 6 ]
4 4100 100
Rise in temperature,At =50°C
Free expansion of copper bar=a, LAt

Free expansion of steel tube =a LAt

m* =2.1991x10"°m’

Difference in free expansion =(a, —a;)Lat
=(17-11.5)x10° x L x50=2.75x10*Lm

A compressive force (P) exerted by the steel tube on the copper rod opposed the extra
expansion of the copper rod and the copper rod exerts an equal tensile force P to pull the steel
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tube. In this combined effect reduction in copper rod and increase in length of steel tube
equalize the difference in free expansions of the combined system.
Reduction in the length of copper rod due to force P Newton=
PL PL
(aL)

¢ AE, (2.8275x10°)(105x10°) o

Increase in length of steel tube due to force P
PL P.L

AE, (21991x10°)(210x10°

Difference in length is equated

(AL) +(AL), =2.75x107*L
PL P.L

(AL>S - ) m

+ —2.75x107%L
(2.8275><10*3)(105><109) (2.1991><10*3)(210><109)
Or P =49.695 kN
Stress in copper rod, o, = Lid = 49695 —MPa=17.58MPa
A~ 2.8275x10
P 49695

Stress in steel tube, 0, = — = ——————MPa = 22.6MPa

A 21991x10°

S

Since each of the pin is in double shear, shear stress in pins (Tp,n)
_ P _ 4;9695 —79MPa
XAy 9 “H(0.02)

Conventional Question IES-2002
Question: Why are the bolts, subjected to impact, made longer?
Answer: If we increase length its volume will increase so shock absorbing capacity will increased.

Conventional Question IES-2007
Question: Explain the following in brief:
(i) Effect of size on the tensile strength
(ii) Effect of surface finish on endurance limit.

Answer: (1) When size of the specimen increases tensile strength decrease. It is due to the reason
that if size increases there should be more change of defects (voids) into the material
which reduces the strength appreciably.

(i) If the surface finish is poor, the endurance strength is reduced because of scratches
present in the specimen. From the scratch crack propagation will start.

Conventional Question IES-2004
Question: Mention the relationship between three elastic constants i.e. elastic modulus (E),

rigidity modulus (G), and bulk modulus (K) for any Elastic material. How is the
Poisson's ratio (L) related to these modulli?

Answer:Ezﬂ
3IK+G
9KG
E=3K(1-2u)=2G(1+pn) =
(1—2w (1+p) K1G

Conventional Question IES-1996
Question: The elastic and shear moduli of an elastic material are 2x101! Pa and 8x101° Pa
respectively. Determine Poisson's ratio of the material.

9KG

A : We k that E = 2G(1+p ) = 3K(1-2u) =
nswer e know tha (1+p) (1-2p) K G
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or,1+ _E
TG
11
orpe o 2X10 4 505

2G 2x(8x10")

Conventional Question IES-2003

Question: A steel bolt of diameter 10 mm passes through a brass tube of internal diameter 15
mm and external diameter 25 mm. The bolt is tightened by a nut so that the length
of tube is reduced by 1.5 mm. If the temperature of the assembly is raised by 40°C,
estimate the axial stresses the bolt and the tube before and after heating. Material
properties for steel and brass are:

E,=2x10° N/mm’ o, =12x10"/°C and Ex=1x10> N/mm? ,=1.9x105/°C

Answer:

7
i
[\\\“ S e N

[ /

Area of steel bolt (A, )=%>< (0.010°m* =7.854x10°m?

Area of brass tube (A, )=%[(0.025)2 —(0.015°| =3.1416 10

Stress due to tightening of the nut

Compressive force on brass tube= tensile fore on steel bolt
or, 6, A, =06 A,

(A1) 6 ©
E, ~—2.A —o.A VB =T
)

Let assume total length (¢)=1m

-3
Therefore (1x10° x106)xwx(3.1416 x107*) =0, x7.854x10°

or o, =600MPa (tensile)

(A1),

-3
and o,=E,_ = (1%10°) x WMPa =150MPa(Compressive)

So before heating
Stress in brass tube (o, ) = 150MPa (compressive)
Stress in steel bolt(c, ) = 600MPa (tensile)

Stress due to rise of temperature
Let stress 6, & 6, are due to brass tube and steel bolt.
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If the two members had been free to expand,
Free expansion of steel = o, XAf X1

Free expansion of brass tube = oy, XAt X1

Since «y, >0 free expansion of copper is greater than the free expansion of steel. But they

are rigidly fixed so final expansion of each members will be same. Let us assume this final
expansion is ' 0', The free expansion of brass tube is grater than 0, while the free expansion of
steel is less than 6. Hence the steel rod will be subjected to a tensile stress while the brass

tube will be subjected to a compressive stress.
For the equilibrium of the whole system,

Total tension (Pull) in steel =Total compression (Push) in brass tube.
, . . . A 7.854x107° . -

0, A =c A or, 6,=0, x—=———-230,=0.25¢
b’ 'b s’’s b s Ab 314)(1074 S S

Final expansion of steel =final expansion of brass tube

as(At).1+%x1:ab(At)x1—&><1

s b
or.(1.2x10°5)x40x 1+ ——25  — (1.9x10 °)x40x1———b
(1:2x10°%) a0 e~ (90 xa0d = e
From(i) & (ii) we get
1 0.25 )
TR —2.8%x107*

or,c, = 37.33 MPa (Tensile stress)

or, 0,= 9.33MPa (compressive)

Therefore, the final stresses due to tightening and temperature rise
Stress in brass tube =0, +0,=150+9.33MPa=159.33MPa

Stress in steel bolt =o_+0, = 600 + 37.33 = 637.33MPa.

Conventional Question IES-1997
A Solid right cone of axial length h is made of a material having density p and

Question:

Answer:

elasticity modulus E. It is suspended from its circular base. Determine its

elongation due to its self weight.
See in the figure MNH is a solid right cone of
length 'h'.
Let us assume its wider end of diameter’'d’ fixed

—i)

rlgldlyatMN !J!M::JJIIJ.‘JJJ;;;;;N,«J

Now consider a small strip of thickness dy at a
distance y from the lower end.

Let 'ds' is the diameter of the strip.
2

.. Weight of portion UVH=%[RZS

yxpg —(i)

From the similar triangles MNH and UVH,
MN d ¢

uw d, y
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force at UV _ Weight of UVH

.. Stress at section UV =

cross — sec tion area at UV nd?
4
1 nd?
=3 4 i =ZYr9
nd? 3
4
1
[ypg]-dy
So, extension in dy= =
L ypgdy
’S 2
. Total extension of the bar =f 3 _ pgh
5 E 6E

From stress-strain relation ship

_o b _%
E—E_dlor,df_ 5
!

Conventional Question IES-2004
Question: Which one of the three shafts listed hare has the highest ultimate tensile strength?
Which is the approximate carbon content in each steel?
(i) Mild Steel (ii) cast iron (iii) spring steel
Answer: Among three steel given, spring steel has the highest ultimate tensile strength.
Approximate carbon content in
(1)  Mild steel is (0.3% to 0.8%)
(i) Cost iron (2% to 4%)
(ii1)) Spring steel (0.4% to 1.1%)

Conventional Question IES-2003

Question: If a rod of brittle material is subjected to pure torsion, show with help of a sketch,
the plane along which it will fail and state the reason for its failure.

Answer: Brittle materials fail in tension. In a torsion test the maximum tensile test Occurs at 45°to the
axis of the shaft. So failure will occurs along a 45° to the axis of the shaft. So failure will occurs

along a 45° helix

So failures will occurs according to 45°plane.

Conventional Question IAS-1995

Question: The steel bolt shown in Figure has a thread pitch of 1.6 mm. If the nut is initially
tightened up by hand so as to cause no stress in the copper spacing tube, calculate
the stresses induced in the tube and in the bolt if a spanner is then used to turn the
nut through 90°.Take E: and Es as 100 GPa and 209 GPa respectively.

Answer: Given: p = 1.6 mm, E.= 100 GPa ; Es = 209 CPa.
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Copper spacing
. tube Steel bolt
10 mm dia)
12 | 18 | .
mme |mmé
h-——— 100 mm -——-l

Stresses induced in the tube and the bolt, o,,0 :

A:ZX 10
* 4 (1000

2
A ="« 18 )
* 4 1000

2.
1000

2
j =7.584x10°m?

2
j }:14.14><10'5m2

Tensile force on steel bolt, Ps = compressive force in copper tube, P. = P
Also, Increase in length of bolt + decrease in length of tube = axial displacement of nut

e (01), +(01), =1.6x—

Pl Pl
or

ACEC

4+ —=

90 _ 0.4mm=0.4x10"m
360
04x10° (w1, =, =

1

ASES
100
or P x - st —~ 5
1000 )| 7.854 x107° x209x10° 14.14x10° x100x10
P

or =30386N
P

=386.88MPa
A

S

Conventional Question AMIE-1997

Question:

and Ai =214.89MPa

C

:|=0.4><’103

A steel wire 2 m long and 3 mm in diameter is extended by 0:75 mm when a weight

W is suspended from the wire. If the same weight is suspended from a brass wire,
2:5 m long and 2 mm in diameter, it is elongated by 4 -64 mm. Determine the
modulus of elasticity of brass if that of steel be 2.0 X 105 N / mm?

Answer:

Given, |y =2 m, d= 3 mm, o, =075 mm; Es= 20 x 105 N/ mm?2;l, =2.5 m, d»

=2 mm Ol, =4.64mm and let modulus of elasticity of brass = Ep

Pl

Hooke's law gives, 0l = —

Case I: For steel wire:

o, = P
ASES

or 0.75=

Px(2x1000)

[Symbol has usual meaning]

T

Case II: For bass wire:
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Pl,

AbEb

P x (2.5 x1 000)

. e (i)
ZX X Eb

N
2500

ol, =

4.64 =

or P=4.64x[£x22ijb
4
From (1) and (i1), we get

0.75x| Zx32 |x2.0x10° x —!
4 2

000
or E, =0.909 x 10°N/ mm?

N
2500

=4.64x(%x22ijb

Conventional Question AMIE-1997

Question: A steel bolt and sleeve assembly is shown in figure below. The nut is tightened up
on the tube through the rigid end blocks until the tensile force in the bolt is 40 kN.
If an external load 30 kN is then applied to the end blocks, tending to pull them
apart, estimate the resulting force in the bolt and sleeve.

Steel bolt Gteel sleeve
25mm @ 62.5mm 0D
\ / 50.omm 1D
P IS SIS | Y/ ST IA
\x‘\ B RS, S e AT
ty AR RS AR R j=u
End block End block
fe————— LOOMM ———————
S 500mm P

2
Answer: Area of steel bolt, A, = Z—SJ =4.908x10*m?
1000

2 2
Area of steel sleeve, A ZEK 62'5) —( 50 j }=1.104><10‘3m2

41{1000 1000

Forces in the bolt and sleeve:
(1) Stresses due to tightening the nut:

Let o, = stress developed in steel bolt due to tightening the nut; and
O, = stress developed in steel sleeve due to tightening the nut.
Tensile force in the steel bolt = 40 kN = 0-04 MN
o, xA, =0.04
or 0,x4.908x10" =0.04
0.04
O-b = e A4
4.908x10
Compressive force in steel sleeve = 0-04 MN
o,xA, =0.04
or o,x1.104x107° =0.04
0.04
O-S = —73
1.104 x10

(1) Stresses due to tensile force:

=81.5MN/m?(tensile)

=36.23MN/m? (compressive)
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Let the stresses developed due to tensile force of 30 kN = 0-03 MN in steel bolt and sleeve be
o', and o' respectively.

Then, o',x A, + o' ,xA, =0.03

U'b><4.908><10_4+(7'S><1.104><1O_3:0.03 ——=(i)
In a compound system with an external tensile load, elongation caused in each will be the
same.

ol =Zb x|,

b
or 5Ib=%x0.5 (Given,l, =500mm =0.5)
b

and 4l = UE x0.4  (Given,l, =400mm=0.4)

s

But dl, =4,
95,05=25%x04
Eb Es
or o', =080, (Given,E, =E;) ---(2)

Substituting this value in (1), we get
0.85'.x4.908x10™* + o' .x1.104x10° = 0.03

gives o', =20MN/m?(tensile)
and o', =0.8x20=16MN/m?(tensile)
Re sulting stress in steel bolt,
(0,). =0, +0', =81.5+16 =97.5MN/m?
Re sulting stress in steelsleeve,
(0,), =0, +0',=36.23-20=16.23MN/m’ (compressive)
Resulting force in steel bolt,= (o, )r x A,
=97.5x4.908 x10™* =0.0478MN(tensile)
Resulting force in steelsleeve = (o, )r x A
=16.23x1.104x10"° = 0.0179MN(compressive)
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2.  Principal Stress and Strain

Theory at a Glance (for IES, GATE, PSU)

2.1 States of stress

® Uni-axial stress: only one non-zero Area

principal stress, i.e. 01 ,ff"'"/l //1
Right side figure represents Uni-axial state of — | .

(53 ]

stress. 1
® Bi-axial stress: one principal stress =

equals zero, two do not, 1.e. 01>03 ; 02 =0
Right side figure represents Bi-axial state of ——
stress. o | |

Lm

® Tri-axial stress: three non-zero oz

principal stresses, i.e. 01>02>03 A
Right side figure represents Tri-axial state of .

— o

stress. &1 /

o J
o]
® Jsotropic stress: three principal ¢
stresses are equal, 1.e. 01 = 02 = 03 %
Right side figure represents isotropic state of =

stress. . /

® Axial stress:two of three principal }%,

stresses are equal, i.e. 01 = 02 or 02 = 03 —

Right side figure represents axial state of o

stress.
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Hydrostatic pressure: weight of column of
fluid in interconnected pore spaces.

Phydrostatic= pavia gh (density, gravity, depth)

Hydrostatic stress:Hydrostatic stress 1is
used to describe a state of tensile or
compressive stress equal in all directions
within or external to a body. Hydrostatic
stress causes a change in volume of a
material. Shape of the body remains
unchanged i.e. no distortion occurs in the

body.

Right side figure represents Hydrostatic state of

stress.

2.2 Uni-axial stress on oblique plane

Principal Stress and Strain

S K Mondal’s

Let us consider a bar of uniform cross sectional area A under direct tensile load P giving rise to axial

normal stress P/A acting on a cross section XX. Now consider another section given by the plane YY inclined

at @ with the XX. This is depicted in following three ways.

Fig. (¢)

A
Area of the YY Plane 2—0; Let us assume the normal stress in the YY plane is O
COos

shear stress T acting parallel to the YY plane.

n

and there 1s a

Now resolve the force P in two perpendicular direction one normal to the plane YY = P cos @ and another

parallel to the plane YY = Psin@
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Therefore equilibrium gives, 0O, = Pcosfor

cosd

and 7 X

=Psinfor 7 :Esiné’cosﬁ or
cos@ A

® Note the variation of normal stress O N and shear stress T with the variation of @ . Whené =0,

normal stress o0,is maximum i.e. (0',, )max =— and shear stressz=0. As 6 is increased, the

A

normal stress o, diminishes, until whend=0, o, =0. But if angle @ increased shear stress 7
. . P T 4o R o
increases to a maximum value 7, = 2A at 0= 1 45° and then diminishes to 7 =0 at 6 =90

® The shear stress will be maximum when Sin28 =1or 0 =45°

_P
=" 24

® And the maximum shear stress, 7,

® In ductile material failure in tension is initiated by shear stress i.e. the failure occurs across the

shear planes at 45° (where it is maximum) to the applied load.
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e Complementary stresses

Now if we consider the stresses on an oblique plane Y'Y’ which is perpendicular to the previous plane

YY. The stresses on this plane are known as complementary stresses. Complementary normal stress

is O ,; and complementary shear stress isT " The following figure shows all the four stresses. To
obtain the stresses O r; and T’we need only to replace & by 0+90°in the previous equation. The

angle 8+90° is known as aspect angle.

a!
f.
N\

4

Therefore

p

It is clear O',; +0, ZZ and 7' =—T

i.e. Complementary shear stresses are always equal in magnitude but opposite in sign.

® Sign of Shear stress

For sign of shear stress following rule have to be followed:

The shear stress 7 on any face of the element will be considered positive when it has a clockwise
moment with respect to a centre inside the element. If the moment is counter-clockwise with respect

to a centre inside the element, the shear stress in negative.
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o, =75MPa

&, =25MPa

For-2020 (IES,GATE, PSUs) Page 75 of 493 Rev.0



Chapter-2 Principal Stress and Strain S K Mondal’s
2.3 Complex Stresses (2-D Stress system)

i.e. Material subjected to combined direct and shear stress

We now consider a complex stress system below. The given figure ABCD shows on small element of

material
Oy A
Ty
N .
Ly
A E
| N
. Tr/ \P Ty
|
| ” o[ o
Ox + =T %ﬁx ks
Tl | IS —— i n
\l ; Tuy
;"\‘.f == D «—F—— C
F YE Twy
J, ¥ Oy
Oy
Stresses in three dimensional element Stresses in cross-section of the element

o, and o, are normal stresses and may be tensile or compressive. We know that normal stress may come
from direct force or bending moment. T Xy is shear stress. We know that shear stress may comes from direct
shear force or torsion and 7 Xy and 7 yx are complementary and

Txy = Tyx

Let o, is the normal stress and 7 1is the shear stress on a plane at angle 0.

Considering the equilibrium of the element we can easily get

o.+o, 0,-0, :
Normal stress(O'n ) == + 5 c08260+ 7, 81N 20

o,-0

—X Y sin20 - 7. cos26
2 2

Shear stress(z) =

Above two transformation equations for plane stress are coming from considering equilibrium. They do not

depend on material properties and are valid for elastic and in elastic behavior.

e Location of planes of maximum stress
(a) Normal stress, (Gn )max

For o n maximum or minimum
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%o, =0, where o, = (0:+9,) + (0:-9,) cos 260+, sin20

00 2 2 Y
- 2

or —Mx(sinw)x2+rx (cos20)x2=0 or tan26 =y
2 d P (o, -0,)

(b) Shear stress, 7

max

For 7 maximum or minimum

2=0, where 7= 2%
o0

sin 29—rxy cos 26

or Zx 20y (cos20)x2-7,, (-sin20)x2=0

T
or cot20 = il
o,—0,

Yo, =15 MPa

B
= 10 MPa

ox =30 MPa
Pa
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2.4 Bi-axial stress

Let us now consider a stressed element ABCD where 7, =0, ie. only o, and o, is there. This type of

stress is known as bi-axial stress. In the previous equation if you put 7,, =0 we get Normal stress, o, and

shear stress, 7 on a plane at angled .

c.+to, o0, ,-0, Oy
e Normal stress, o, = 5 + 3 cos26
A B
. 0,70, . AN
e Shear/Tangential stress, 7 = Tysm 20
0 o B Ox
e TFor complementary stress, aspect angle = € +90 id
O
e Aspect angle ‘0’ varies from 0 to 77/2
D C
e Normal stress o, varies between the values I
Oy

c.(0=0)& o,(0=7/2)

ox=100 MPa

® We may derive uni-axial stress on oblique plane from

o.,to, o0,-0, )
o = + cos20+ 7. sin26
n 2 2 xy
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d 6,—-60, .
M= Y gin20- 7. cos20
2 v

Just put o, =0 and 7,,=0 A B
Y
Therefore,
+0 -0 1 — I
o, =2 O Co0s20=—0, (1+cos20) =0, cos’0  Ox i o
2 2 2 =
o, -0 . o, .
and 7= X2 sm20=?xsm20 D C

2.5 Pure Shear

® Pure shear is a particular case of bi-axial stress where G - G

X Y
Note: o, or o which one is compressive that is immaterial but one should be tensile and other

should be compressive and equal magnitude. If o, =100MPa then o, must be—100MPa otherwise if

o,= 100MPa then o, mustbe—100MPa .

® |n case of pure shear on 45° planes

—+ ,
T = TO_ ;0 =0 and o' =0
max X n n
® We may depict the pure shear in an element by following two ways
(a) In a torsion member, as shown below, an element ABCD is in pure shear (only shear stress is
present in this element) in this member at 45° plane an element A'B'C'D’is also in pure shear

where o, = -0, but in this element no shear stress is there.

T A —-
Ty el O
D C

Txy

(b) In a bi-axial state of stress a member, as shown below, an element ABCD in pure shear where

o, =—0,but in this element no shear stress is there and an element A'B'C'D’ at 45° plane is

also in pure shear (only shear stress is present in this element).
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—

[U-,-: —Ox=_-T

B

c

y= —Ox = —T

Ge=T

Principal Stress and Strain

AI

Y N\

Bl

N\,

CI

S K Mondal’s

Let us take an example:See the in the Conventional question answer section in this chapter and the

question is “Conventional Question IES-2007"

2.6 Stress Tensor

® State of stress at a point ( 3-D)

Stress acts on every surface that passes through the point. We can use three mutually perpendicular

planes to describe the stress state at the point, which we approximate as a cube each of the three planes

has one normal component & two shear components therefore, 9 components necessary to define stress

at a point 3 normal and 6 shear stress.

Therefore, we need nine components, to define the state of stress at a point

T
X .
—=— Ty = Ty If they don’t offset, block spins therefore,
s T, = T, only six are independent.
o T,= 1,

The nine components (six of which are independent) can be written in matrix form

Gxx ny ze 2-xx Z-xy sz O-x 2-xy sz 01 1 O-'I 2 01 3
O-ij = O-yx Uyy O-yz or Tij = Tyx Tyy Tyz = Tyx O'y Tyz = (721 0'22 0'23
O-zx zy zz sz zy Tzz sz sz O-z 0-31 0-32 0-33

This is the stress tensor

Components on diagonal are normal stresses; off are shear stresses
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Z
O-z
¢ Z/;z.f / x
rzx.: /1
—_— rf_'-"
Fyx
O-X
‘._'Er r./z
D-}’
1
0 X
® State of stress at an element (2-D)
[ oy
AT
Ty
.0 s
D =—1—— C

¥ Ty
AX

2.7 Principal stress and Principal plane

e When examining stress at a point, it is possible to choose three mutually perpendicular
planeson which no shear stresses exist in three dimensions, one combination of orientations for
the three mutually perpendicular planes will cause the shear stresses on all three planes to go to
zero this is the state defined by the principal stresses.

o Principal stresses are normal stresses that are orthogonal to
each other

e Principal planes are the planes across which principal
stresses act (faces of the cube) for principal stresses (shear

stresses are zero)

For-2020 (IES,GATE, PSUs) Page 81 of 493 Rev.0



Chapter-2 Principal Stress and Strain S K Mondal’s
¢ Major Principal Stress

e Minor principal stress

o Position of principal planes

¢ Maximum shear stress(In —Plane)

¢ Maximum positive and maximum negative shear stresses (Out - of - Plane)

Tmax = T % occurs at 45° to the principal axes -2

Tmax = T % occurs at 45° to the principal axes -1
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ReferencePlane BC
g

o, =—111.4MPa

2.8 Mohr's circle for plane stress

e The transformation equations of plane stress can be represented in a graphical form which is

popularly known asMohr's circle.

For-2020 (IES,GATE, PSUs) Page 83 of 493 Rev.0



Chapter-2 Principal Stress and Strain S K Mondal’s
¢ Though the transformation equations are sufficient to get the normal and shear stresses on any

plane at a point, with Mohr's circle one can easily visualize their variation with respect to plane

orientation 0.

o Equation of Mohr's circle

o.,to, o0,-0, .
’2 + 5 cos20+r,, sin20

We know that normal stress, o, =

GX c .
And Tangential stress, T = Tysm29 - T,, COS 20

) o, to, c,—0, . )
Rearranging we get, | 0, — 5 = 5 cos26+ 7, sin 20 ...counnn... 6))

GX GV
and T = T‘sinZO -T,,€0820 .o (i1

A little consideration will show that the above two equations are the equations of a circle with o, and 7 as

its coordinates and 260 as its parameter.
If the parameter 20 is eliminated from the equations, (i) & (i1) then the significance of them will become

clear.

. |o,+o,
It is the equation of a circle with centre, (O'avg . 0) l.e. T,
2
O —0
andradius, R = — 2 2'2
2 >

e Construction of Mohr’s circle

Convention for drawing

e AT Xy that is clockwise (positive) on a face resides above the O axis; a7 Xy anticlockwise
(negative) on a face resides below O axis.

® Tensile stress will be positive and plotted right of the origin O. Compressive stress will be

negative and will be plotted left to the origin O.

® An angle Gon real plane transfers as an angle 2 6 on Mohr's circle plane.

For-2020 (IES,GATE, PSUs) Page 84 of 493 Rev.0



Chapter-2 Principal Stress and Strain S K Mondal’s
We now construct Mohr’s circle in the following stress conditions

I. Bi-axial stress when O, and O'y known and Txy =0
11. Complex state of stress (GX , Gy and Txy known)
I. Constant of Mohr’s circle for Bi-axial stress (when only O, and Gy known)
If O, and O, y both are tensile or both compressive sign of O, and O, y will be same and this state of stress

is known as “ like stresses” if one is tensile and other is compressive sign of O, and O, y will be opposite and

this state of stress is known as ‘unlike stress’.

Construction of Mohr’s circle for like stresses (when O, and O, are same type of stress)
Step-I: Label the element ABCD and draw all stresses.

D A

O™ ’.Ux
cC B
L'ﬁ
Step-II: Set up axes for the direct stress (as abscissa) i.e., in x-axis and shear stress (as ordinate) i.e. in
Y-axis
T
iy 0 I
-1

Step-I1I: Using sign convention and some suitable scale, plot the stresses on two adjacent faces e.g. AB
and BC on the graph. Let OL and OM equal to O, and O, y respectively on the axis OO .

T

M L

Step-IV: Bisect ML at C. With C as centre and CL or CM as radius, draw a circle. It is the Mohr’s
circle.
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T

I
-0 @) |IIl Gy & ,r . °
(e + ay)
WA S—

-T

Step-V: At the centre C draw a line CP at an angle 20 , in the same direction as the normal to the

plane makes with the direction of O - The point P represents the state of stress at plane

ZB.
N L]
D Z A
T c,
o
e B ax " "
. @] G
cC B
1 [ + ay)
Oy 2
Ty

Step-VI: Calculation,Draw a perpendicular PQ and PR where PQ = 7 and PR = o,

(o + cy)
2
-T
GX+0y GX—Gy
OC=—"andMC=CL=CP= ———*
2 2
O, +0 O, — O
PR=an= X y+ X ycos29
2 2
UX—O'y

PQ =7 =CPsin 26 = sin 20
2
[Note: In the examination you only draw final figure (which is in Step-V) and follow the

procedure step by step so that no mistakes occur.]
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Construction of Mohr’s circle for unlike stresses (when G, and O, are opposite in sign)

°
Follow the same steps which we followed for construction for ‘like stresses’ and finally will get the figure

shown below.

lﬁ:’-
D Z A
T 2
(]
Oy o Ox
e o
C B
Ty

Note:For construction of Mohr’s circle for principal stresses when (Ojand O,is known) then follow the

same steps of Constant of Mohr’s circle for Bi-axial stress (when only O, and O, y known) just change the

o, = O'1and Gy = 02

IL. Construction of Mohr’s circle for complex state of stress (O, , Gy and Txy known)

Label the element ABCD and draw all stresses.

Step-I:
J\U}_
T,
D — %
Tx}’
Ox T
Ty
C————— B
er
y Oy

Step-II: Set up axes for the direct stress (as abscissa) i.e., in x-axis and shear stress (as ordinate) i.e. in

Y-axis
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L

S K Mondal’s
T

Step-III: Using sign convention and some suitable scale, plot the stresses on two adjacent faces e.g. AB

and BC on the graph. Let OL and OM equal to O, and O'y respectively on the axis OO .

Draw LS perpendicular to OO axis and equal to T Xy de. LS=T Xy - Here LS 1s downward as

T xy o0 AB face is (— ive) and draw MT perpendicular to OO axis and equal to T Xy l1e. MT=

Txy . HereMT is upward as Txy BC face 1s (+ ive).

T
Ty
M| L
-a O Gy Oy
fx},
_t S

Step-IV: Join ST and it will cut OO axis at C. With C as centre and CS or CT as radius, draw circle. It
is the Mohr’s circle.

Step-V: At the centre draw a line CP at an angle 268 in the same direction as the normal to the plane
makes with the direction of O’ X
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Oy rx}f
D 5 " é
Y ik :
Oy o Cx
] B
Oy

Step-VI: Calculation,Draw a perpendicular PQ and PR where PQ = 7 and PR = o,
o, + O'y

Centre, OC =
2

Radius CS = (CL)2 +(LS)? = (GX;W] +7xy2 =CT=CP

O'X'|‘0'y UX—O'y
n 2 2

PR =c cos 20 + Txy sin 20

O'X—O'y .
PQ=r= Tsln 20-7xy COS26.
[Note: In the examination you only draw final figure (which is in Step-V) and follow the

procedure step by step so that no mistakes occur.]

Note: The intersections of OO0 axis are two principal stresses, as shown below.

Let us take an example:See the in the Conventional question answer section in this chapter and the

question is “Conventional Question IES-2000”
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2.9 Mohr's circle for some special cases:

i) Mohr’s circle for axial loading:
L)

o zg; o,=1,=0

ii) Mohr’s circle for torsional loading:

T
— Tr . _ _ 0

Ty —7, 0,=0,=

It is a case of pure shear

iii) In the case of pure shear

(01 =-o0zand 03 =0)

o, =-0,

T =t0

max X

iv) A shaft compressed all round by a hub

WL

TTITTITTTIITT

01 = 02= 03 = Compressive (Pressure)

v) Thin spherical shell under internal pressure
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D
o, =0, = or = ]Z—t (tensile)

2t

vi) Thin cylinder under pressure

T
A
Pr
o, =—
m r
_ o
r
D pr d pr
o, = P = pr (tensile) and o, = Pa = pr (tensile)
2t t 4t 2t
vii) Bending moment applied at the free end of a cantilever
M 0

ey

1N
. \/

Only bending stress, o, = Ty ando, =7,, =0

2.10 Strain
Normal strain

Let us consider an element AB of infinitesimal length 6x. After deformation of the actual body if

ou
displacement of end A is u, that of end B is U+&.5X. This gives an increase in length of element AB is

ou ou ou
u+—.0X -U |= —OJX and therefore the strain in x-direction is &, =—
OX OX OX

o . L ov
Similarly, strains in y and z directions are &, = — and ¢, =—.

OX 0z
Therefore, we may write the three normal strain components
ou ov ow
& =—: £, =—; and &, =—.
oX oy 0z
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én _
U +=—0X

[
B |

Al IB.

Change in length of an infinitesimal element.
Shear strain

Let us consider an element ABCD in x-y plane and let the displaced position of the element be A'B'C'D’

This gives shear strain in x-y plane asy, =oc +f where o is the angle made by the displaced live B'C’

with the vertical and fis the angle made by the displaced line A'D'with the horizontal. This gives

— aX— — a_u and ﬂ:ax— — 6_\/
oy oy oX ox
We may therefore write the three shear strain components as
ou  ov ov oW oW ou
Vo=t Vp=——t—andy, =—+—
oy 0OX 0z oy oX o0z

Therefore the state of strain at a point can be completely described by the six strain componentsand the
strain components in their turns can be completely defined by the displacement components u,v , and w.

Therefore, the complete strain matrix can be written as

i 0 0
19).4
1o 2 o
X ay
P
"I'lo o 2
&, _ o0z v
|l |0 9
V| | %X 8ay ;
yzx O - -
oy 0z
o o 92
| 0z ox |
y
11*23}'
cu .
— oy
al - -
- B‘ -
GV
1'--‘—:-‘::-1'_\' I B C
A BV
vi T

Alw] D x
du .

u+—o0x
x

Shear strain associated with the distortion of an infinitesimal element.

For-2020 (IES,GATE, PSUs) Page 92 of 493 Rev.0



Chapter-2 Principal Stress and Strain S K Mondal’s

Strain Tensor
The three normal strain components are
ou ov oW
Ex=TEx T y vy — z zz T AL
oX oy 0z

The three shear strain components are

€, :yxyzl a_u+a_v X €,= 7/yz:1 a_V+6_W and EZXZy—szl(a—u-F%
¥ 2 2loy ox ¥ 2 2\oz oy 2 2\oz ox

Therefore the strain tensor is

7)0’ 7/xz
eX)( 2 2
exx Exy exz
e.=le. € e _|= Vix € Vye
i Tyx vy vz | 2 vy 2
€ e €
X zy zz yzx 7/zy
eZZ
2 2

Constitutive Equation
The constitutive equations relate stresses and strains and in linear elasticity. We know from the
Hook’s law (U) =E.¢

Where E is modulus of elasticity

o
It is known that o, produces a strain of —- in x-direction

o o
and Poisson’s effect gives _'UEX in y-direction and _'UEX in z-direction.

Therefore we my write the generalized Hook’s law as

ex:%[ax—,u(ay+o;)], Ey=%[0'y—,u(0'2+(7x)] and ez:%[az—y(o-XJrayﬂ

It is also known that the shear stress, 7 =Gy, where G is the shear modulus and y is shear strain. We may

thus write the three strain components as

Vg = TGy - =%Z and y,, =%X

In general each strain is dependent on each stress and we may write
x _K11 Kiz Kis Kiy Kis Kig 1|
€y Ko Ky Ko Koy KsKys ]9y
&, _ Kat Kao Kyg Koy K Ky || 0
Yy Kt Ko Kig Ky Kis Kig || 7y
V2 Ksi Ko, Kyy Koy Kys Ko Tyz
Y _K61 Kez K63 K64 K65 Kse_ Tox

.. The number of elastic constant is 36(For anisotropic materials)
For Anisotropic material only 21 independent elastic constant are there.

If there are axes of symmetry in 3 perpendicular directions, material is called orthotropic materials. An

orthotropic material has 9 independent elastic constants
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For isotropic material

1
K11=K22:K33=E
1
K44 =K55 :KGG ZE
K,=K.,=K, =K, =K, =K, =—#
12 13 21 23 31

32 E
Rest of all elements in K matrix are zero.

For isotropic material only two independent elastic constant is there say E and G.

e 1-D Stress _ L, . 5
- A — F
Let us take an example: A rod of cross sectional area A, is I % -
loaded by a tensile force P. o L '
, P
It’s stresses o, = A—, o, = 0, and o,=0

1-D state of stress or Uni-axial state of stress

o, 00 z, 0 0 c, 00
o;={ 0 0 Ojorz;=0 0 O0|={0 0O
0 0O 0 00O 0 00

Therefore strain components are

x E ,ey__/’lE __/’lex;and z /Ll - lLl X
Strain
9% 0 0
& 0 0 E p 0 0
g,,,=0—ng0=0—y%0=0qyo
0 0 —ue, o 0 0 g,
o 0 —ux
"E
e 2-D Stress (0. =0)
1 - _
@) Ex—E_O'x—,UO'y_
1 - _
Ey—E_O'y—,UO'x_

z

e=—4lo+o]

[Where, €,, €,,€, are strain component in X, Y, and Z axis respectively]
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e 3-D Stress & Strain

Chapter-2

(ii)

6 exzéjax ~u(o,+0.)
e=lo,-u(o.+a)
e~—[o.-ulo+a,)
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2.12 An element subjected to strain components € ,€ &%W

Consider an element as shown in the figure given. The strain component In X-direction is €, , the strain

component in Y-direction is €, and the shear strain component is Yy -

Now consider a plane at an angle @ with X- axis in this plane a normal strain €, and a shear strainy,.

Then

e +e. € —¢€
e €,= x2 4 x2 y00520+%sin29 o
w—] {!ue,
749 € € vy =

« 2= —Msin26’+7/i00520
2 2

We may find principal strain and principal plane for strains in the same process which we followed for
stress analysis.
In the principal plane shear strain is zero.

Therefore principal strains are

e +e e — €
e [ Aty R
T2 2 2

The angle of principal plane

7xy

tan26’p =
(ex - ey)

e Maximumshearing strain is equal to the difference between the 2 principal strains i.e

(7/xy )max :El o e2
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Mohr's Circle for circle for Plain Strain

S K Mondal’s

We may draw Mohr’s circle for strain following same procedure which we followed for drawing Mohr’s

circle in stress. Everything will be same and in the place of O , write €, the place of O, y write € y

. . X
and in place of T yy Write
y
X
2 Sy
= ;
y D
" _Fﬂ."-"""_'_}-_‘_'_ k
|
. |
¥ t g =g,
Tay 28 R: o
2 Taty |
7 LT 1
2 | 261 "'?'1'1; i =
] 7
| i "
e =
I r
I_E—-—-—"’FF X
€y +€, Ey +E, g +5, Eroaty
o - p=¢ i
7] 2 z
=, .
£,
£

2.15 Volumetric Strain (Dilation)

A relationship similar to that for length changes holds for three-dimensional (volume) change.

P
volumetric strain, (EV) , the relationship is (5V) = (V-Vy)/ Voor (5v) =AV/Vo= E

® Where Vis the final volume, Viis the original volume, and AV is the volume change.

® Volumetric strain is a ratio of values with the same units, so it also is a dimensionless quantity.

® AV/V=volumetric strain = extey+ .= e1 +e2 + €3

For

® Dilation:The hydrostatic component of the total stress contributes to deformation by changing the

area (or volume, in three dimensions) of an object. Area or volume change is called dilation and is

.. . . . p .
positive or negative, as the volume increases or decreases, respectively. € = R Where p is pressure.
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e Rectangular block, L
AV + + /
— =€ S S
X y z L
Vs
L
Proof: Volumetric strain L(1+e,)
L L
AV _V -V,
VI) VO 3 L - L(1+2,)
L(1+&,)xL(1+¢,)xL(1+&,)-L S
After deformation,

= Before deformation,

L3
Volume (V,) = L3 Volume (V)

=€, +€,+e,
(neglecting second and third order

term, as very small)

e In case of prismatic bar,

dv L
Volumetric strain,—— =& (1 —2 H ) P {— ‘ A
\)
. P <—| 'Y
Proof: Before deformation, the volume of the bar, V= - %

AL
After deformation, the length (L') =L (1 + 6‘)

and the new cross-sectional area (A') = A(1 - ,ug)2

Therefore now volume (V') =A'L'=AL (1 + 5)(1 - ,ug)2

AV V'V AL(1+&)(1- pe)’ - AL
R Tat = —e(1-2)

%4(1_2#)

e Thin Cylindrical vessel

C . O, o pr
€ 1=Longitudinal strain =— — y—2=—-—"—[1-2
1=Longitudinal strain z Y7, z 2Et[ ,u]

€, =Circumferential strain =72 — , 7L = ﬂ[2 - u]
E E 2FEt

AV pr
—=€,+2¢,=—[5-4
% 1 2 2Et[ 1y

o

® Thin Spherical vessels

v
€=§ 262:%[1_/1]
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AV 3pr
—=3e="—[1-
v > e [1—p]

® In case of pure shear

o,=—0,=7
Therefore

&, =é(’|+,u)

&y =——(1+ )

e =0

dv
Therefore ¢, =—=¢, +¢,+¢,=0
v

2.16 Measurement of Strain
Unlike stress, strain can be measured directly. The most common way of measuring strain is by use of the

Strain Gauge.

Strain Gauge

A strain gage is a simple device, comprising of a thin
electric wire attached to an insulating thin backing fﬁl, m fﬂi_

material such as a bakelite foil. The foil is exposed to the

surface of the specimen on which the strain is to be

—

measured. The thin epoxy layer bonds the gauge to the | l——
Thin foil
or electric

were part of the specimen being strained. wire

surface and forces the gauge to shorten or elongate as if it

A change in length of the gauge due to longitudinal strain

creates a proportional change in the electric resistance, . .
and since a constant current is maintained in the gauge, a + s

proportional change in voltage. (V = IR).

The voltage can be easily measured, and through -th-akelite

calibration, transformed into the change in length of the

original gauge length, i.e. the longitudinal strain along the STRAIN GAUGE
gauge length.

Strain Gauge factor (G.F)

Measured from Bridge voltage

‘,,,_.-H"’
GF — AR/R AR/R
. AéJE £t
Given Calculated

The strain gauge factor relates a change in resistance with strain.
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Strain Rosette

The strain rosette is a device used to measure the state of strain at a point in a plane.

It comprises three or more independent strain gauges, each of which is used to read normal strain at the
same point but in a different direction.

The relative orientation between the three gauges is known as a ,f and §

The three measurements of normal strain provide sufficient information for the determination of the
complete state of strain at the measured point in 2-D.

We have to find out €,, €, and y,, form measured value €,, €,, and e,

General arrangement:

The orientation of strain gauges is given in the ED\ |Y
figure. To relate strain we have to use the
following formula.
e +€, € —¢ -
€=—"—L+—= Y c0s20 + 2 sin26 A
2 2 2 €. | €
We gt RN
€, t+e €, —€ Yy % ‘ X
€, = L+ Y cos2a + =L sin2a e
2 2 2 o)
e +€, €, —¢€
g=— L+ cosZ(a+,B)+7/"y sin2(a + p)
2 2 2
e +€, € -—-¢€
e == 5 Y X 5 ycosZ(a+ﬁ+5)+%sin2(a+ﬂ+5)

From this three equations and three unknown we may solve €, g, and Yy

e Two standard arrangement of the of the strain rosette are as follows:

(i) 45° strain rosette or Rectangular strain rosette.

In the general arrangement above, put y

a=0°% p=45° and s =45°

Putting the value we get

® c =€, b
o o-StE T .

2 2 = X

a
[ ] ec :ey
(ii) 60°strain rosette or Delta strain rosette
In the general arrangement above, put y
a=0% p=60° ands=60°
Putting the value we get b
[ ea :ex C
o 0
e +3e, 3 60 120

s g=—"T—+—7. =

4 47 = > x
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e +3e, 3 or
R %
4 4 "V ¥
Solving above three equation we get
=TS
1
ey=§(2.eh +2g, -5 6
2
':’Qn,r - EEEC _Eh:l
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 25-Years GATE Questions

Stresses at different angles and Pure Shear

GATE-1.

GATE-2.

GATE-3.

GATE-4.

GATE-4a.

A block of steel is loaded by a tangential force on its top surface while the bottom
surface is held rigidly. The deformation of the block is due to

[GATE-1992]
(a) Shear only (b) Bending only  (c) Shear and bending (d) Torsion

A shaft subjected to torsion experiences a pure shear stress 7 on the surface. The
maximum principal stress on the surface which is at 45° to the axis will have a value
[GATE-2003]

(a) 7 cos 45° (b) 27 cos 45° (c) T cos? 45° (d) 27 sin 45° cos 45°

The number of components in a stress tensor defining stress at a point in three
dimensions is: [GATE-2002]

(a) 3 (b) 4 (c) 6 (d)9

A bar of rectangular cross-sectional area of 50 mm? is pulled from both the sides by
equal forces of 100 N as shown in the figure below. The shear stress (in MPa) along
the plane making an angle 45° with the axis, shown as a dashed line in the figure, is
[PI: GATE-2016]

45°
In a two dimensional stress analysis, the state of stress at a point is shown below. If
6 =120 MPa and t=70MPa, c_and c,,are respectively. [CE: GATE-2004]
A
AB=14
BC=3 A
AC=5
T c
Oy \l
B L C P x
Oy
(a) 26.7 MPa and 172.5 MPa (b) 54 MPa and 128 MPa
(c) 67.5 MPa and 213.3 MPa (d) 16 MPa and 138 MPa

GATE-4b. A carpenter glues a pair of cylindrical wooden logs by bonding their end faces at an

angle of 0 = 30° as shown in the figure. [GATE-2018]
Log 1 . Log 2
6;' GE axis
4 MPal -t e e > 4 MPa
X
@\
6 =30°
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The glue used at the interface fails if

Criterion 1: the maximum normal stress exceeds 2.5 MPa
Criterion 2: the maximum shear stress exceeds 1.5 MPa

Assume that the interface fails before the logs fail. When a uniform tensile stress of 4 MPa is
applied, the interface

(a) fails only because of criterion 1
(b) fails only because of criterion 2
(c) fails because of both criteria 1 and 2

(d) does not fail.

GATE-5. The symmetry of stress tensor at a point in the body under equilibrium is obtained

from
(a) conservation of mass (b) force equilibrium equations
(¢) moment equilibrium equations (d) conservation of energy[CE: GATE-2005]

GATE-5a. The state of stress at a point on an element is shown in figure (a). The same state of
stress is shownin another coordinate system in figure (b) [GATE-2016]

The components (Txx, Tyy, Txy) are given by
(a) (p/ 2, —p/ 2, 0) () (0,0, p)
() (p,—p,p/2) (d) (0,0, p/2)

GATE-5b. Thestateofstress at a pointiso, = 0, = 0, = T, = T, = T), = T, = 0 and 1,,, = T, = 50 MPa.

The maximum normal stress (in MPa) at that point is

[GATE-2017]

Principal Stress and Principal Plane

GATE-6. Consider the following statements: [CE: GATE-2009]
1. On a principal plane, only normal stress acts
2. On a principal plane, both normal and shear stresses act
3. On a principal plane, only shear stress acts
4. Isotropic state of stress is independent of frame of reference.
Which of these statements is/are correct?

(@) 1and 4 (b) 2 only
(¢c)2and 4 (d) 2 and 3
GATE-7 If principal stresses in a two-dimensional case are -10 MPa and 20 MPa respectively,
then maximum shear stress at the point is [CE: GATE-2005]
(a) 10 MPa (b) 15 MPa
(c) 20 MPa (d) 30 MPa

For-2020 (IES,GATE, PSUs) Page 103 of 493 Rev.0



Chapter-2 Principal Stress and Strain S K Mondal’s
GATE-7a. If 0,and o, are the algebraically largest and smallest principal stresses respectively,

the value of the maximum shear stress is [GATE-2018]
o,t0, o, — 0, o, t0o, o, — 0,
a)——— b) ——= C)y|—— d),|——
(a) > (b) > (c) > (d) >

GATE-8 For the state of stresses (in MPa) shown in the figure below, the maximum shear
stress (in MPa) is [CE: GATE-2014]

4

]
J

4

GATE-8(@) In a plane stress condition, the components of stress at point are ox = 20 MPa, oy = 80
MPa and 1txy = 40 MPa. The maximum shear stress (in MPa) at the point is
(a) 20 (b) 25 (c) 50 (d) 100 [GATE-2015]

GATE-9. A solid circular shaft of diameter 100 mm is subjected to an axial stress of 50 MPa. It
is further subjected to a torque of 10 kNm. The maximum principal stress
experienced on the shaft is closest to [GATE-2008]

(a) 41 MPa (b) 82 MPa (c) 164 MPa (d) 204 MPa

GATE-10. The state of two dimensional stresses acting on a concrete lamina consists of a direct
tensile stress, o, =1.5 N/ mm?, and shear stress, 1=1.20 N/mm?®, which cause cracking

of concrete. Then the tensile strength of the concrete in N/ mm®is [CE: GATE-2003]

(a) 1.50 (b) 2.08

(c) 2.17 (d) 2.29
GATE-11. In a bi-axial stress problem, the stresses in x and y directions are (ox = 200 MPa and oy

=100 MPa. The maximum principal stress in MPa, is: [GATE-2000]

(a) 50 (b) 100 (c) 150 (d) 200
GATE-12. The maximum principle stress for the stress g

state shown in the figure is ~

(a) o (b)20 —0

()30 (d) 150

a a
a~ |

v
[GATE-2001]
GATE-13. The normal stresses at a point are ox = 10 MPa and, oy = 2 MPa; the shear stress at this
point is 4MPa. The maximum principal stress at this point is: [GATE-1998]

(a) 16 MPa (b) 14 MPa (c) 11 MPa (d) 10 MPa

GATE-14. The state of stress at a point is given by 6, =-6 MPa, 6, =4 MPa, and t  =-8MPa.The
maximum tensile stress (in MPa) at the point is .......... [GATE-2014]

GATE-14a. The state of stress at a point, for a body in plane stress, is shown in the figure below.

If the minimum principal stress is 10 kPa, then the normal stress o, . (in kPa) is
(a) 9.45 (b) 18.88 (c) 37.78 (d) 75.50 [GATE-2018]
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y .
Mohr’s Circle
GATE-15. In a Mohr's circle, the radius of the circle is taken as: [IES-2006; GATE-1993]

o-o,) | (0,0}
(a) 5 +(rxy) (b) TWL(%)

2
o 752 e oo (o)

Where, ox and oy are normal stresses along x and y directions respectively and Ty is the shear
stress.

GATE-16. A two dimensional fluid element rotates like a rigid body. At a point within the
element, the pressure is 1 unit. Radius of the Mohr's circle, characterizing the state of
stress at that point, is: [GATE-2008]

(a) 0.5 unit (b) 0 unit (c) 1 unit (d) 2 units

GATE-17. The state of stress at a point under plane stress condition is
0xx= 40 MPa, 0y,y= 100 MPa and 1+,= 40 MPa.
The radius of the Mohr’s circle representing the given state of stress in MPa is
(a) 40 (b) 50 (c) 60 (d) 100 [GATE-2012]

30 0
0 30
(a) center at (0, 0) and radius 30 MPa (b) center at (0, 0) and radius 60 MPa
(c) center at (20, 0) and radius 30 MPa (d) center at (30, 0) and zero radius

[CE: GATE-2006]
GATE-20. The figure shows the state of stress at a certain + -
J\',-

GATE-18. Mohr’s circle for the state of stress defined by [ } MPa is a circle with

point in a stressed body. The magnitudes of
normal stresses in the x and y direction are
100MPa and 20 MPa respectively. The radius of
Mohr's stress circle representing this state of

stress is: :' G"-,
(a) 120 (b) 80
(c) 60 (d) 40

* ﬁl"

[GATE-2004]
Data for Q21-Q22 are given below. Solve the problems and choose correct answers.

[GATE-2003]
The state of stress at a point "P" in a two dimensional loading is such that the Mohr's circle is a
point located at 175 MPa on the positive normal stress axis.

GATE-21. Determine the maximum and minimum principal stresses respectively from the
Mohr's circle

(a) + 175 MPa, —175MPa (b) +175 MPa, +175 MPa
(c) 0,175 MPa (d)o,0
GATE-22. Determine the directions of maximum and minimum principal stresses at the point
“P” from the Mohr's circle [GATE-2003]
(a) 0, 90° (b) 90°, 0 (c) 45°, 135° (d) All directions

GATE-22a. The state of stress at a point in a component is represented by a Mohr's circle of
radius 100 MPa centered at 200 MPa on the normal stress axis. On a plane passing
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through the same point, the normal stress is 260 MPa. The magnitude of the shear
stress on the same plane at the same point is MPa. [GATE-2019]

Volumetric Strain

GATE-23. An elastic isotropic body is in a hydrostatic state of stress as shown in the figure. For
no change in the volume to occur, what should be its Poisson’s ratio? [CE: GATE-2016]

Oy

A

——> G,
Oy
(a) 0.00 (b) 0.25 (c) 0.50 (d) 1.00
GATE-23a. The Poisson’s ratio for a perfectly incompressible linear elastic material is
(a1 (b) 0.5 (0 (d) Infinity[GATE-2017]

GATE-23b. Length, width and thickness of a plate are 400 mm, 400 mm and 30 mm, respectively.
For the material of the plate, Young’s modulus of elasticity is 70 GPa, yield stress is 80
MPa and Poisson’s ratio is 0.33. When the plate is subjected to a longitudinal tensile
stress of 70 MPa, the increase in the volume (in mms3) of the plate is _ [GATE-2017(PI)]

Principal strains
GATE-24. If the two principal strains at a point are 1000 x 10 and -600 X 106, then the

maximum shear strain is: [GATE-1996]
(a) 800 x 106 (b) 500 x 106 (¢) 1600 x 106 (d) 200 x 106
GATE-24a. A plate in equilibrium is subjected to Oyy = 50 MPa

uniform stresses along its edges with

A F 3

magnitude oxx = 30 MPa and oyy =50 MPa as T T T T >
shown in the figure. The Young’s modulus — Yo -
of the material is 2x10!! N/m2? and the . | L,
Poisson’s ratio is 0.3. If 0. is negligibly kX Oxx = 30 MPa
small and assumed to be zero, then the % —
strain e, is ] —>

. -6 . -6 < >
(a) -120%x10 (b) - 60x10 | l l l l |
(c) 0.0 (d) 120 x10-6

[CE: GATE-2018]

GATE-24b. Consider a linear elastic rectangular thin sheet of metal, subjected to uniform
uniaxial tensile stress of 100 MPa along the length direction. Assume plane stress
conditions in the plane normal to the thickness. The Young's modulus E = 200 MPa
and Poisson's ratio v = 0.3 are given. The principal strains in the plane of the sheet
are
(a) (0.5,-0.5) (b) (0.5, -0.15) (c) (0.35,-0.15) (d) (0.5, 0.0) [GATE-2019]

GATE-24c. A rectangular region in a solid is in a state of plane strain. The (x, y) coordinates of
the corners ofthe undeformed rectangle are given by P(0,0), R(4,3), S(0,3). The
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rectangle is subjected to uniform strains, exx = 0.001, £yy = 0.002, ¥ xy = 0.003, The

deformed length of the elongateddiagonal, upto three decimal places, is
units. [GATE-2017]

Strain Rosette

GATE-25. The components of strain tensor at a point in the plane strain case can be obtained
by measuring logitudinal strain in following directions.

(a) along any two arbitrary directions (b) along any three arbitrary direction
(c) along two mutually orthogonal directions
(d) along any arbitrary direction [CE: GATE-2005]

Previous 25-Years IES Questions

Stresses at different angles and Pure Shear

IES-1. If a prismatic bar be subjected to an axial tensile stress o, then shear stress induced
on a plane inclined at 0 with the axis will be: [TES-1992]
o . o o o .,
(a)zsm 26 (b)zcos 26 (C)ECOS 0 (d) 5 sin 0

IES-1a. The state of stress at a point when completely specified enables one to determine the
1. maximum shearing stress at the point [IES-2016]
2. stress components on any arbitrary plane containing that point
Which of the above is/are correct?

(a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2
TES-2. In the case of bi-axial state of normal stresses, the normal stress on 45° plane is equal

to [TES-1992]

(a) The sum of the normal stresses (b) Difference of the normal stresses

(c) Half the sum of the normal stresses (d) Half the difference of the normal stresses

IES-2(i). Two principal tensile stresses of magnitudes 40MPa and 20MPa are acting at a point
across two perpendicular planes. An oblique plane makes an angle of 30° with the

major principal plane. The normal stress on the oblique plane is [IES-2014]
(a) 8.66MPa (b) 17.32MPa (c) 35.0MPa (d) 60.0MPa
A point in two-dimensional stress state, is S
IES-2a A
subjected to biaxial stress as shown in the /
above figure. The shear stress acting on
the plane AB is
(a) Zero (b) o I >G
(c) o cos20 (d) o sin 0. cos 0 6
0
B
c
[IES-2010]
TES-3. In a two-dimensional problem, the state of pure shear at a point is characterized by
[IES-2001]

For-2020 (IES,GATE, PSUs) Page 107 of 493 Rev.0



Chapter-2 Principal Stress and Strain S K Mondal’s

(@ e, =¢,andy, =0 (b) e, =—¢,andy, , +#0
(© e =2¢,andy,  +#0 (d) &, =0.5¢,and y,, =0
IES-3a. What are the normal and shear stresses on —_——- — 1= t 400 MPa

the 45° planes shown?
(a) 0, =—0, =400MPa and t =0
(b) 0, =0,=400MPa andr =0

N\ |
(c) 0, =0, =—400MPa and r =0 A
(d) 0, =0, =1 =%200MPa \///;{

e

TES-4. Which one of the following Mohr’s circles represents the state of pure shear?

[TES-2000]
T

(c) ‘ /_\\ (d) /-.\

A ;

IES-4(i). If the Mohr’s circle drawn for the shear stress developed because of torque applied
over a shaft, then the maximum shear stress developed will be equal to [IES-2014]
(a) diameter of the Mohr’s circle (b) radius of the Mohr’s circle
(c) half of the radius of the Mohr’s circle  (d) 1.414 times radius of the Mohr’s circle

{c) (h)

4
N/

IES-5. For the state of stress of pure shear 7 the strain energy stored per unit volume in the
elastic, homogeneous isotropic material having elastic constants E and v will be:
[TES-1998]

2 2 2 2

T T 2T T
(a) E(1+v) (b) ﬁ(l-i-v) (0)7(1+V) (d) ﬁ(zw)

TES-6. Assertion (A): If the state at a point is pure shear, then the principal planes through
that point making an angle of 45° with plane of shearing stress carries principal
stresses whose magnitude is equal to that of shearing stress.

Reason (R): Complementary shear stresses are equal in magnitude, but opposite in
direction. [IES-1996]

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R 1s NOTthe correct explanation of A

(¢) Aistrue but R is false

(d) Aisfalse but R is true

IES-7. Assertion (A): Circular shafts made of brittle material fail along a helicoidally surface
inclined at 45° to the axis (artery point) when subjected to twisting moment.
Reason (R): The state of pure shear caused by torsion of the shaft is equivalent to one
of tension at 45° to the shaft axis and equal compression in the perpendicular
direction. [TES-1995]
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOTthe correct explanation of A
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IES-8.

IES-9.

IES-10.

IES-10().

IES-11.

IES-11a

Principal Stress and Strain S K Mondal’s
(¢) Aistrue but R is false
(d) Aisfalse but R is true

A state of pure shear in a biaxial state of stress is given by [TES-1994]
o 0 o 0 o, T,

(a) (b) () ’ (d) None of the above
0 o 0 -0 7, O,

The state of plane stress in a plate of 100 mm thickness is given as [TES-2000]

oxx = 100 N/mm?2, oyy = 200 N/mm?2, Young's modulus = 300 N/mm?2, Poisson's ratio = 0.3.
The stress developed in the direction of thickness is:

(a) Zero (b) 90 N/mm?2 (c) 100 N/mm?2 (d) 200 N/mm?2

The state of plane stress at a point is described by o = c,=0 and T, = 0. The normal
stress on the plane inclined at 45° to the x-plane will be: [TES-1998]

(a)o (b) oY, (C)\/§G (d)2o

An elastic material of Young’s modulus E and Poisson’s ratio v is subjected to a
compressive stress of o1 in the longitudinal direction. Suitable lateral compressive
stress oz are also applied along the other twolateral directions to limit the net strain
in each of the lateral direction to half of the magnitude that would be under o; acting

alone. The magnitude of o2 is [IES-2012]
v v v v
(a) 20+ (b) 20— (c) RETIA (d) R
Consider the following statements: [TES-1996, 1998]

State of stress in two dimensions at a point in a loaded component can be completely
specified by indicating the normal and shear stresses on

1. A plane containing the point

2. Any two planes passing through the point

3. Two mutually perpendicular planes passing through the point
Of these statements

(a) 1, and 3 are correct (b) 2 alone is correct

(c) 1 alone is correct (d) 3 alone is correct

If the principal stresses and maximum shearing stresses are of equal numerical value
at a point in a stressed body, the state of stress can be termed as

(a) Isotropic (b) Uniaxial [TES-2010]

(c) Pure shear (d) Generalized plane state of stress

Principal Stress and Principal Plane

IES-12.

TES-12(i).

IES-13.

IES-13a.

In a biaxial state of stress, normal stresses are ox = 900 N/mm2, oy= 100 N/mm2and
shear stress T = 300 N/mm2. The maximum principal stress is [IES-2015]

(a) 800 N/mm?2 (b) 900 N/mm?2 (c) 1000 N/mm?2 (d)1200 N/mm?2

A body is subjected to a pure tensile stress of 100 units. What is the maximum shear
produced in the body at some oblique plane due to the above? [IES-2006]

(a) 100 units (b) 75 units (c) 50 units (d) 0 unit

In a strained material one of the principal stresses is twice the other. The maximum
shear stress in the same case is 7, .Then, what is the value of the maximum

principle stress? [TES 2007]
(a) Tmax (b) 2 Tmax (c) 4 Tmax (d) 8 Tmax

A body is subjected to a direct tensile stress of 300 MPa in one plane accompaniedby
a simple shear stress of 200 MPa. The maximum normal stress on the plane willbe
(a) 100 MPa (b) 200 MPa (c) 300 MPa  (d) 400MPa [TES-2016]
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IES-13b. The state of stress at a point in a loaded member is ox = 400 MPa, oy =- 400 MPa

and txy =+ 300 MPa . The principal stresses o, and o, are [TES-2016]
(a) 300 MPa and — 700 MPa (b) 400 MPa and — 600 MPa
(c) 500 MPa and — 500 MPa (d) 600 MPa and — 400 MPa

IES-13c. The state of plane stress at a point in a loaded member is given by:

o, =+ 800 MPa
c, =+ 200 MPa
1, =400 MPa [IES-2013]

The maximum principal stress and maximum shear stress are given by:
(@) o, =800 MPa and t_,_ =400 MPa

(b) o,.. =800MPaandr_,  =500MPa
(¢) o, =1000 MPa and t_,_ =500 MPa
(d) o, =1000 MPa and t_, =400MPa

IES-13d. The state of stress at a point in a body is given by ox= 100 MPa, oy = 200 MPa. One of
the principal o1 = 250 MPa. The magnitude of other principal stress and shearing

stress Txy are respectively [TES-2015]
(a@)5043 MPa and 50 MPa (b) 100 MPa and 50+/3 MPa
(¢) 50MPa and 504/3 MPa (d) 50+/3 MPa and 100 MPa

IES-13e. A state of plane stress consists of a uniaxial tensile stress of magnitude 8 kPa, exerted
on vertical surfaces and of unknown shearing stresses. If the largest stress is 10 kPa,

then the magnitude of the unknown shear stress will be [TIES-2018]
(a) 6.47kPa (b) 5.47 kPa (c) 4.47 kPa (d) 3.47 kPa
IES-14. In a strained material, normal stresses on two mutually perpendicular planes are ox
and oy (both alike) accompanied by a shear stress txy One of the principal stresses
will be zero, only if [TES-2006]
o X0 > )
@ 7, = Ty b) 7, =0, ,x0, @7, = Jo. x o, @) 7,, =40, +0,
TES-15. The principal stresses o1, 02 and o3 at a point respectively are 80 MPa, 30 MPa and -40
MPa. The maximum shear stress is: [TES-2001]
(a) 25 MPa (b) 35 MPa (c) 55 MPa (d) 60 MPa

IES-15(i). A piece of material is subjected, to two perpendicular tensile stresses of 70 MPa and
10 MPa. The magnitude of the resultant stress on a plane in which the maximum
shear stress occurs is [TES-2012]

(a) 70 MPa (b) 60 MPa (c) 50 MPa (d) 10 MPa

IES-16. Plane stress at a point in a body is defined by principal stresses 30 and o. The ratio of
the normal stress to the maximum shear stresses on the plane of maximum shear
stress is: [TES-2000]

(a)1 (b) 2 (c) 3 (d) 4

IES-16(i). A system under biaxial loading induces principal stresses of 100 N/cm? tensile and 50
N/em? compressive at a point. The normal stress at that point on the maximum shear
stress at that point on maximum shear stress plane is [TES-2015]

(a) 75 N/cm?2 (b) 50 N/cm?2 (c) 100 N/cm? (d) 25 N/em?
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IES-17.  Principal stresses at a point in plane stressed element are o, =0, :500kg/cm2.

Normal stress on the plane inclined at 45° to x-axis will be: [TES-1993]
(a0 (b) 500 kg/cm? (c) 707 kg/cm? (d) 1000 kg/cm?

TES-19. For the state of plane stress. 10MPg
Shown the maximum and — 40 Mpg
minimum principal stresses are:

(a) 60 MPa and 30 MPa —]—»

(b) 50 MPa and 10 MPa 5954_ 50MPg

(c) 40 MPa and 20 MPa

(d) 70 MPa and 30 MPa 40Mpg TMPa
[TES-1992]

IES-20. Normal stresses of equal magnitude p, but of opposite signs, act at a point of a
strained material in perpendicular direction. What is the magnitude of the resultant
normal stress on a plane inclined at 45° to the applied stresses? [IES-2005]
(a)2p (b) p/2 (c) p/4 (d) Zero

IES-21. A plane stressed element is subjected to the state of stress given by
o, =17, :100kgf/cm2 and oy = 0. Maximum shear stress in the element is equal to
[TES-1997]
(a) 50~/3 kgf/cm? (b)100kgf/cm? (c) 50/5 kgf/cm’ (d)150kgf/cm’
IES-21(i). The magnitudes of principal stresses at a point are 250MPa tensile and 150 MPa
compressive. The magnitudes of the shearing stress on a plane on which the normal

stress is 200MPa tensile and the normal stress on a plane at right angle to this plane
are [IES-2015]

(a) 50/7 MPa and 50 MPa (tensile) (b) 100 MPa and 100 MPa (compressive)
(c) 50+/7 MPa and 100 MPa (compressive) (d) 100MPa and 5047 MPa (tensile)

IES-22. Match List I with List II and select the correct answer, using the codes given below

the lists: [TES-1995]
List I(State of stress) List II(Kind of loading)
A. E 1. Combined bending and torsion of circular shaft.
| !
B. — 2. Torsion of circular shaft.
G — 3. Thin cylinder subjected to internal pressure.

4. Tie bar subjected to tensile force.

Codes: A B C D A B C D
a 1 2 3 4 (b) 2 3 4 1
(c) 2 4 3 1 (d) 3 4 1 2
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Mohr's circle

TES-23. Consider the Mohr's circle shown T .1\
above:
What is the state of stress
represented by this circle?
(@o,=0,#0,7,,=0
(b)o, +o,=0,7,, 20 -_— i o,
(c)o, =0, o, =1, 20

(d)o, 20,0, =7, =0

[TES-2008]
IES-24. For a general two dimensional stress system, what are the coordinates of the centre
of Mohr’s circle?
[IES 2007]
() UX—O'y 0 (b)O O'X-I—O'y ()Ux+0y O(d) OO'X—Uy
a - < b ) - C - ) b -
2 2 2 2

IES-25. In a Mohr's circle, the radius of the circle is taken as: [IES-2006; GATE-1993]

0,—0, ’ 2 (Ux—Uy)z 2

@ =5 +(z,,) (b) T+(rxy)
2

o 752 e oo oo

Where, ox and oy are normal stresses along x and y directions respectively and Tty is the shear
stress.

IES-25(i). The state of stress at a point under plane stress condition is

o, =60MPa,o, =120MPa and 7., =40MPa . [IES-2014]
The radius of Mohr’s circle representing a given state of stress in MPais
(a) 40 (b) 50 (c) 60 (d) 120
IES-25(ii). The state of stress at a point is given by ox= 100 MPa, oy=- 50 MPa, txy= 100 MPa. The
centre of Mohr’s circle and its radius will be [TES-2015]
(a) (0x=75MPa, txy=0) and 75MPa (b) (0x=25MPa, txy=0) and 125MPa
(c) (0x=25MPa, 1xy=0) and 150MPa (d) (0x=75MPa, txy=0) and 125MPa
IES-25(iii). = Which of the following figures may represent Mohr’s circle? [TES-2014]

(a) (b) - (d)

TES-26. Maximum shear stress in a Mohr's Circle [TES-2008]
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(a) Is equal to radius of Mohr's circle (b) Is greater than radius of Mohr's circle
(c) Is less than radius of Mohr's circle (d) Could be any of the above

IES-27. At a point in two-dimensional stress system ox = 100 N/mm?2, oy = txy = 40 N/mm2. What
is the radius of the Mohr circle for stress drawn with a scale of: 1 ecm = 10 N/mm?2?

[TES-2005]

(a) 3cm (b) 4 cm (c) 5cm (d) 6 cm
IES-28. Consider a two dimensional state of stress given for an element as shown in the
diagram given below: [TES-2004]
A
200 MPa
— —
200 MPa
» X T? 00 MPa

What are the coordinates of the centre of Mohr's circle?
(a) (0, 0) (b) (100, 200) (c) (200, 100) (d) (50, 0)

TES-29. Two-dimensional state of stress at a point in a plane stressed element is represented
by a Mohr circle of zero radius. Then both principal stresses
(a) Are equal to zero [TES-2003]
(b)  Are equal to zero and shear stress is also equal to zero
(¢)  Are of equal magnitude but of opposite sign
(d) Are of equal magnitude and of same sign
IES-30. Assertion (A): Mohr's circle of stress can be related to Mohr's circle of strain by some
constant of proportionality. [IES-2002, IES-2012]
Reason (R): The relationship is a function of yield stress of the material.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOTthe correct explanation of A
(¢) Aistrue but R is false
(d) Aisfalse but R is true

IES-30(i). Consider the following statements related to Mohr’s circle for stresses in case of
plane stress: [TES-2015]

1. The construction is for variations of stress in a body.

2. The radius of the circle represents the magnitude of the maximum shearing stress.
3. The diameter represents the difference between two principal stresses.

Which of the above statements are correct?

(a2)1,2 and 3 only  (b)2 and 3 only (c) 1 and 3 only (d) 1 and 2 only

IES-31. When two mutually perpendicular principal stresses are unequal but like, the
maximum shear stress is represented by [TES-1994]
(a) The diameter of the Mohr's circle
(b) Half the diameter of the Mohr's circle
(¢)  One-third the diameter of the Mohr's circle
(d)  One-fourth the diameter of the Mohr's circle

IES-32. State of stress in a plane element is shown in figure I. Which one of the following

figures-II is the correct sketch of Mohr's circle of the state of stress?
[IES-1993, 1996]
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S
lﬁ _ ‘b ' ‘ -
| LD e
w2 -2 (e !
[ —
Figure-I Figure-II

Volumetric Strain

IES-33.

IES-33a.

IES-33b.

IES-34.

IES-34a

IES-34b

IES-34c.

If a piece of material neither expands nor contracts in volume when subjected to
stress, then the Poisson’s ratio must be
(a) Zero (b) 0.25 (c) 0.33 (d) 0.5 [TES-2011]

A metal piece under the stress state of three principal stresses 30, 10 and 5 kg/mm? is
undergoing plastic deformation. The principal strain rates will be in the proportions

of [IES-2016]
(a) 15,—5and - 10 (b) —15,5and - 10
(c) 15, 5 and 10 (d)—15,—5and 10

A point in a two dimensional state of strain is subjected to pure shearing strain of
magnitude y,, radians. Which one of the following is the maximum principal strain?

[IES-2008]
@) 7 ) 7,32 (©) 7,12 ) 27,

Assertion (A): A plane state of stress does not necessarily result into a plane state of
strain as well. [TES-1996]
Reason (R): Normal stresses acting along X and Y directions will also result into
normal strain along the Z-direction.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOTthe correct explanation of A

(¢) Aistrue but R is false

(d) Aisfalse but R is true

Assertion (A): A plane state of stress always results in a plane state of strain.
Reason (R): A uniaxial state of stress results in a three-dimensional state of strain.
(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOTthe correct explanation of A
(¢) Aistrue but R is false [TES-2010]
(d) Aisfalse but R is true

Assertion (A): A state of plane strain always results in plane stress conditions.

Reason (R): A thin sheet of metal stretched in its own plane results in plane strain conditions.
(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOTthe correct explanation of A

(¢) Aistrue but R is false

(d) Aisfalse but R is true

Consider the following statements:

When a thick plate is subjected to external loads:

1. State of plane stress occurs at the surface

2. State of plane strain occurs at the surface

3. State of plane stress occurs in the interior part of the plate
4. State of plane strain occurs in the interior part of the plate

For-2020 (IES,GATE, PSUs) Page 114 of 493 Rev.0



Chapter-2 Principal Stress and Strain S K Mondal’s
Which of these statements are correct? [TES-2013]
(@) 1and 3 (b) 2and 4 (¢c) 1and 4 (d) 2 and 3

Principal strains

IES-35. Principal strains at a point are 100x10° and -200x107°. What is the maximum shear
strain at the point? [TES-2006]
(a) 300 x 106 (b) 200 x 10-¢ (c) 150 x 10-6 (d) 100 x 106

TES-36. The principal strains at a point in a body, under biaxial state of stress, are 1000x10-6
and -600 x 10-6.What is the maximum shear strain at that point?

[IES-2009]
(a) 200 x 10-6 (b) 800 X 10-¢ (c) 1000 x 10 (d) 1600 x 106
IES-37. The number of strain readings (using strain gauges) needed on a plane surface to
determine the principal strains and their directions is: [TES-1994]
(a)1 (b) 2 (c) 3 (d) 4

Principal strain induced by principal stress

IES-38. The principal stresses at a point in two dimensional stress system are o1 and o2 and
corresponding principal strains are ¢ and ¢,. If E and v denote Young's modulus and

Poisson's ratio, respectively, then which one of the following is correct?

[TES-2008]
E
(@) o, =Ee¢, (b)o, = m[a} +ve,|
E
(c)o, :m[a — v, | (d)o, =E[e, —vs, ]
IES-38(i). At a point in a body, 1 = 0.004 and £2 = -0.00012. If E = 2x10> MPa and p = 0.3, the
smallest normal stress and the largest shearing stress are [TES-2015]
(a) 40MPa and 40MPa (b) OMPa and 40MPa
(c) 80MPa and OMPa (d)OMPa and 80MPa

IES-38(ii). Two strain gauges fixed along the principal directions on a plane surface of a steel
member recorded strain values of 0.0013 tensile and 0.0013 compressive respectively.
Given that the value of E = 2x10> MPa and p = 0.3, the largest normal and shearing

stress at this point are [TES-2015]
(a)200MPa and 200MPa (b)400MPa and 200MPa
(c)260MPa and 260MPa (d)260MPa and 520MPa

IES-39. Assertion (A): Mohr's construction is possible for stresses, strains and area moment of
inertia. [IES-2009]
Reason (R): Mohr's circle represents the transformation of second-order tensor.
(a) Both A and R are individually true and R is the correct explanation of A.
(b) Both A and R are individually true but R is NOT the correct explanation of A.
(¢) Aistrue but R is false.
(d) Aisfalse but R is true.
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TIES-40.

Principal Stress and Strain

A rectangular strain rosette, shown
infigure, gives following reading in a
strain measurement task,

g, =1000x10° , &, =800x10™°

and &; =600x107°

The direction of the major principal
strainwith respect to gauge 1is

(a) O° (b) 150

(c) 30° (d) 450

S K Mondal’s
,/
i;
l
| /
|

y
7 450 _

k. J [_—JL,,,A, .
€

[IES-2011]

Previous 25-Years IAS Questions

Stresses at different angles and Pure Shear

IAS-1.

IAS-2.

IAS-3.

TIAS-4.

IAS-5.

For-2020 (IES,GATE, PSUs)

On a plane, resultant stress is inclined at an angle of 45° to the plane. If the normal

stress is 100 N /mm?2, the shear stress on the plane is: [IAS-2003]
(a) 71.5 N/mm? (b) 100 N/mm?2 (c) 86.6 N/mm?2 (d) 120.8 N/mm?
Biaxial stress system is correctly shown in [IAS-1999]
304 410 404 404
| .20 | 30 20 0. . .20 220
k
¥
20 10 ]9 0 30 0 30 3;9
A 9 L 1
] T 2005 201 20 =T
30 vl0 40w 40w
@ ®) © @
The complementary shear stresses of T A
intensity 7 are induced at a point in D
the material, as shown in the figure.
Which one of the following is the .rl T
correct set of orientations of principal T
planes with respect to AB?
(a)30° and 120° (b) 45° and 135° C B
(c) 60° and 150° (d) 75° and 165° “—r
[TAS-1998]

A uniform bar lying in the x-direction is subjected to pure bending. Which one of the
following tensors represents the strain variations when bending moment is about the

z-axis (p, q and r constants)? [IAS-2001]
py 0 0 py 0 0
@0 g O ® |0 g 0
0 0 ry 0 0 0
pyv 0 0 pv 0 0
@0 py O @; o0 g O
0O 0 py 0 0 gy

Assuming E = 160 GPa and G = 100 GPa for a material, a strain tensor is given as:
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0.002 0.004 0.006
0.004 0.003 0
0.006 0 0
The shear stress,r_ is:

Xy

(a) 400 MPa (b) 500 MPa (c) 800 MPa (d) 1000 MPa

Principal Stress and Principal Plane

IAS-6. A material element subjected to a plane state of stress such that the maximum shear
stress is equal to the maximum tensile stress, would correspond to

[TAS-1998]
i i 1
o) o) o] L7 a) G]I G.] Gl 1
@ l T T
(b) (c) (d)
TAS-7. A solid circular shaft is subjected to a maximum shearing stress of 140 MPs. The
magnitude of the maximum normal stress developed in the shaft is: [TAS-1995]
(a) 140 MPa (b) 80 MPa (c) 70 MPa (d) 60 MPa
IAS-8. The state of stress at a point in a loaded member is shown in the figure. The
magnitude of maximum shear stress is [IMPa = 10 kg/cm?] [TAS 1994]
(a) 10 MPa (b) 30 MPa (c) 50 MPa (d) 100MPa
&
g, = 40MPa
~ Ty= 300 Pa
k
o, = A0MPa o, = A0MPga
—™
L
T =30MPa™
g, = 40MPa
2
IAS-9. A horizontal beam under bending has a maximum bending stress of 100 MPa and a
maximum shear stress of 20 MPa. What is the maximum principal stress in the beam?
[IAS-2004]
(a) 20 (b) 50 (c) 50 + +/2900 (d) 100
IAS-10. When the two principal stresses are equal and like: the resultant stress on any plane
is: [IAS-2002]
(a) Equal to the principal stress (b) Zero
(c) One half the principal stress (d) One third of the principal stress

IAS-11. Assertion (A): When an isotropic, linearly elastic material is loaded biaxially, the
directions of principal stressed are different from those of principal strains.
Reason (R): For an isotropic, linearly elastic material the Hooke's law gives only two
independent material properties. [TAS-2001]
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOTthe correct explanation of A
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(¢) Aistrue but R is false
(d) Aisfalse but R is true

IAS-12. Principal stresses at a point in a stressed solid are 400 MPa and 300 MPa respectively.
The normal stresses on planes inclined at 45° to the principal planes will be:

[TAS-2000]
(a) 200 MPa and 500 MPa (b) 350 MPa on both planes
(c) 100MPaand6ooMPa (d) 150 MPa and 550 MPa
TAS-13. The principal stresses at a point in an elastic material are 60N/mm? tensile, 20 N/mm?2
tensile and 50 N/mm?2 compressive. If the material properties are: pn = 0.35 and E = 10>
N/mm?2, then the volumetric strain of the material is: [TAS-1997]
(a) 9 x 105 (b) 3x 104 (c) 10.5 x 105 (d) 21 x 10>

Mohr's circle
TAS-14. Match List-I (Mohr's Circles of stress) with List-II (Types of Loading) and select the

correct answer using the codes given below the lists: [IAS-2004]
List-1 List-IT
(Mohr's Circles of Stress) (Types of Loading)
A.

1. A shaft compressed all round by a hub

10
"L/

2. Bending moment applied at the free
B. OiC end of a cantilever

' 3. Shaft under torsion
]
S |
C 0O
4. Thin cylinder under pressure
..
D. O E 5. Thin spherical shell under internal
pressure
Codes: A B C D A B C D
(@ 5 4 3 2 (b) 2 4 1 3
) 4 3 2 5 (d) 2 3 1 5
TAS-15. The resultant stress on a certain plane makes an angle of 20° with the normal to the
plane. On the plane perpendicular to the above plane, the resultant stress makes an
angle of 0 with the normal. The value of 0 can be: [IAS-2001]
(a) 0° or 20° (b) Any value other than 0° or 90°
(c) Any value between 0° and 20° (d) 20° only

TAS-16. The correct Mohr's stress-circle drawn for a point in a solid shaft compressed by a
shrunk fit hub is as (O-Origin and C-Centre of circle; OA = 61 and OB = o32)
[TAS-2001]

For-2020 (IES,GATE, PSUs) Page 118 of 493 Rev.0



Chapter-2 Principal Stress and Strain S K Mondal’s

O 1 O N Y e ©
S

‘3‘ ABC

IAS-17. A Mohr's stress circle is drawn for a body subjected to tensile stress f and f, in

two mutually perpendicular directions such that f, >fy . Which one of the following
statements in this regard is NOT correct? [TAS-2000]

/s

(a) Normal stress on a plane at 45° to 1s equal to
X

2
fi )

(b) Shear stress on a plane at 45° to f, is equal to

(c) Maximum normal stress is equal to f .

/s

(d) Maximum shear stress is equal to

IAS-18.  For the given stress condition o =2 N/'mm?, 6,=0 andr =0, the correct Mohr’s circle
is: [TAS-1999]

T T T
LR rrl_m"}

T
1
G /mm”) o (M /imm®) /r \ oo(immi )
(d)

(a) (b) ©
IAS-19. For which one of the following two-dimensional states of stress will the Mohr's stress
circle degenerate into a point? [TAS-1996]

— . T =T Tﬁ T

L] -

1
@ ®) v ¥

© (d)
Principal strains
IAS-20. In an axi-symmetric plane strain problem, let u be the radial displacement at r. Then
the strain components¢,,&,, Y, are given by [IAS-1995]
@e =g =0y, 00 e = =", =0
Tor or "7 orod "oor ro"
() € :z,ggza—u,Ygzo @ ¢ =a—u,59=6—u, 0= Ou
Toor or " " or 00 " oroo

IAS-21.  Assertion (A): Uniaxial stress normally gives rise to triaxial strain.
Reason (R): Magnitude of strains in the perpendicular directions of applied stress is
smaller than that in the direction of applied stress. [TAS-2004]
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R 1s NOTthe correct explanation of A
(¢) Aistrue but R is false
(d) Aisfalse but R is true
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IAS-22. Assertion (A): A plane state of stress will, in general, not result in a plane state of
strain. [IAS-2002]
Reason (R): A thin plane lamina stretched in its own plane will result in a state of
plane strain.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOTthe correct explanation of A
(¢) Aistrue but R is false
(d) Aisfalse but R is true

OBJECTIVE ANSWERS

GATE-1.Ans. (a) It is the definition of shear stress. The force is applied tangentially it is not a point load
S0 you cannot compare it with a cantilever with a point load at its free end.
+ —
GATE-2. Ans. (d) o, = I 5 Iy O 5 %Y c0s26 + z,,8iN20
Here 0, =0, =0, 7, =7, §=45°
GATE-3. Ans. (d) It is well known that,

Ty =T T =Txand 7, =17,

so that the state of stress at a point is given by six components o,,0,,0, and r
GATE-4. Ans.1 MPa (Range given is 0.9 to 1.1 MPa)
GATE-4a. Ans. (¢)

Let /CAB=0

xy? Tyz’ T

sin 0 :é; cosezé; tan© :i
5 5 4

Thus from force equilibrium,
o, x AB=AC x (6 cos0 — tsin0)

= c =éx[120x£—70x§)
T4 5 5

= 6, =67.5 MPa

And, o, x BC=ACx (o sin0 + 1 cos6)

= c =§x(120x§+70x£]
73 5 5

= o, =213.3 MPa

GATE-4b. Ans. (c¢)
Normal stress on inclined plane, 0, =0, cos’ @ =4xcos>30° =3 MPa
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) 4
Shear stress on inclined plane, 7 = %Sln 20 = EX sm(2>< 300) =1.73 MPa

Since both the stress exceeds the given limits, answer is option (c).

GATE-5. Ans. (¢)

Oy
A Ty
AN
Nty
1
' d
12
1
o4 === > o,
d 9
2 1 d
1 2
Tay\
A
VX
v
Oy
Taking moment equilibrium about the centre, we get
d p—
Tyx ><§+Tyx XE— Txy X§+Txy XE
: Ty =Ty

GATE-5a. Ans. (b) It is a case of Pure shear.

GATE-5b. Ans. 50 Range (49.9 to 50.1)

GATE-6. Ans. (a) On a principal plane, only normal stresses act. No shear stresses act on the principal
plane.

GATE-7.Ans. (b)

. c, -G
Maximum shear stress = ——2

_20-(-10) —5—10) =15 MPa
GATE-7a. Ans. (b)

GATE-8. Ans. 5.0
GATE-8(i). Answer: (c)

2 2
— o, — O -
Tmax = = 20-2 = \/( ad 9 yj +7-xy2 :\/(80220j +402 = 50MPa

GATE-9. Ans. (b) Shear Stress (7 )=— 16T 16X10000 —50.93MPa

Maximum principal Stress = 1 +7° =82 MPa

GATE-10.Ans. (c¢)
Maximum principal stress

,/ 47 75 15 +(1.20)? = 2.17 N/ mm’
O'X —O'y 2
GATE-11. Ans. (d) o, = 5 +r,, if 7,
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o, +0, o, —0,
2
GATE-12. Ans. (b) 0, =0, o, =0, =

xy

+
'.'(61)max - U O- [O- O- j 2 +02 220
2 2
U +G U — 0O, —
GATE-13. Ans. (¢) o, = [ > yj i = 10+2+ (102 2) +42 —11.66 MPa
2
U — 0O, —
GATE-14.Ans. 8.4 to 8.5, o, = [ . yj +r? 6;4+ ( 62 4Y +( 8) —8.434MPa

o, t+o, o, —0,
GATE-14a. Ans.(c) 0, = ( 2 J

_100+0, (1000 ,
5 : +5o or o, =37.78 kPa

GATE-15. Ans. (a)

Y Ty
A Oy
c
S NN
N I\ Oxx
B N (O Ty
0 M |
Ty N
T P B(%max.0)
yx A (“min.o) 0 P Gu
‘[ 20 o
MO ,Tyy)

GATE-16. Ans. (b)
GATE-17. Ans. (b)

2
\/(@] +(40)" =50 MPa

GATE-18.Ans.(d)
The maximum and minimum principal stresses are same. So, radius of circle becomes zero and
centre 1s at (30, 0). The circle is respresented by a point.

GATE-20. Ans. (c¢)
o, =100MPa, o, = —-20MPa

- 100 —-(-20
Radius of Mohr'scircle = Ix 5 % _ 2( ) =60
GATE-21. Ans. (b) : T
T, - ;2 -7, =7, . ”
.‘“— =

o,=0,=0,=0,=+175 MPa

1

GATE-22. Ans. (d) From the Mohr’s circle it will give all directions.
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GATE-22a. Ans. 80

GATE-23. Ans. (c)

GATE-23a. Ans. (b)

GATE-23b. Ans. 1632

M:M(%Jramz)

v E ’

AVZM(O' +o,+0 )xV:w(m MPa+0+0)x(400x400x30) mm’
o 70x10° MPa

E
GATE-24. Ans. (c) Shear strain e, —e,,, = {1000-(-600)} x 10° =1600 x 10°°
GATE-24a. Ans. (a)

GATE-24b. Ans. (b)

n‘=100MPa(——| — 0, = 100 MPa

N
r— Ly —

-

L - -
Assume plane stress condition,o, =0

Thereisnoshearstress,o, =0, =100 MPa ando,=0,=0

GATE-24c. Ans. Range (5.013 to 5.015)
GATE-25. Ans.(b)When strain is measured along any three arbitrary directions, the strain diagram is
called rosette.

IES

IES-1. Ans. (a)
IES-1a. Ans. (¢)

o, to, o0,-0, _ Ty
Normal stress(an ) =— + 5 0os 20+7,,sin26 =
_—
o,-0, . A B
Shear stress(z) = 5 sin28 - r,, cos26 A\P Try
4 O
i
Tuy
D —}  C
Ty
¥ Iy
+ —
IES-2. Ans. (¢) o, = x 5 %, Ix 5 %Y cos20 + z,, 5in20
_ ° A _ Oy + O'y
Atd =45°andr, =0; o, = 2

IES-2(i). Ans(c) o, =40MPa,o, =20MPa .

oc.+o0, O, -0
o= 5 L4 3 2 c0s20 =30+10cos 60 =35MPa
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IES-2a Ans. (a) Shear stress(z) = c’X;—cysinZG - 7,,€0820

Hereo, =0,0, =0 andr,, =0
IES-3. Ans. (b)
IES-3a. Ans. (a)
IES-4. Ans. (¢)
IES-4(i). Ans. (b)
IES-5. Ans. (a)o, =7, o0,=-7, 0,=0

_ 1 2 2 :| _ 1+/,l 2
U ZE[T +( r) 2yr( r) \% 3 °V
IES-6. Ans. (b)

IES-7. Ans. (a) Both A and R are true and R is correct explanation for A.
IES-8. Ans. (b) 0,=7, o0,=-7, 0,=0

TES-9. Ans. (a)
+ —
IES-10. Ans. (a) o, = T« T LT o520 + z,, Sin20

2 2
IES-10(i). Ans. (b)
IES-11. Ans. (d)
IES-11a Ans. (¢)
IES-12. Ans. (¢)
o,—og, 100-0

TES-12(). Ans. () Ty = 772 = —— = 50 units.

0, —0,

(o)
IES-13. Ans. (¢) T, = o,=20, or T,,, =72 or 0, =27, or o= 20,=47,_,

X

2
IES-13a.Ans. (d) 0, = % + \/(gj +200* =400 MPa

400+(—400) . [(400—(-400)) _
IES-138b.Ans. (c) 0, = + 5 +300° =+500 MPa

2

IES-13c. Ans. (¢)
IES-13d. Ans. (c¢)
TES-13e. Ans. (¢)

o +0 [0' —0]2 5
o, =— + L +7
)

=447 tPa

o, +0o, o, —0, 2 )
IES-14. Ans. (¢) o0, = 5 + +7,,

2
+ —
ifo,=0 = 2D |2"N | 2
2 2 v

2 2
o, + O, o, — O,
or | =2—2Y| =| 2| +7%> orr,_ =.o xo
2 2 Xy Xy X y

IES-15. Ans. (d) 7, =—. ;% _80 _2_40) =60 MPa

IES-15@3). Ans. (c)
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2
IES-16. Ans. (b)tan26 = Dy =60=0
o, — 0,

o,—-0, 30-0
T = = =0

max 2 2

3oc+o

2

20

Major principal stress on the plane of maximum shear = o, =

TES-16(i).Ans. (d) Shear stress is maximum at 45° plane.
Jx + O'y O_—0

o, = +——=>cos26
2 2
o, = e +2(_50) + %57 % 0052 x45° = 25 MPa

IES-17. Ans. (b)When stresses are alike, then normal stress on on plane inclined at angle 45° is

2 2
1 1 1 1
=0 cos’O+o0 sin*f=0c | —=| +0.| —| =500 —+—= |=500Keg/cm
0,=0, O, O-y[\/ij Gx(ﬁj {2 2} g

o, +o, o, —o, ’ )
IES-19. Ans. (d) o, = 5 + +7,

2
2
o, = 50+(_10)i [50+10j 402
’ 2 2
Omex =70 and o, =-30

o,+to, 0,-0,
+ cos 20
2 2
P-P P+P
oO. =

=t
2

2
IES-21. Ans. (@) (0) , = T 0+ \/( %t Oj +72, =507 5045

IES-20. Ans. (d) o, =

cos2x45=0

2 2

Maximum shear stress = M = 50\/§

IES-21(i).Ans. (¢)
c,to, o,—C

X

o, = + ~cos20
2 2

_ 250+(-150) , 250 —(-150) 0520

200

or 8=20.7°

B ;Gy sin20 = wsin(zxzam ~132.28 = 507

Without Using Calculator

NG
4

2
cos 26 = 150 3 therefore sin26=,/1— 3] 2
200 4 4

T =

o, -0, 250-(-150) /7 5047

sin20=———— ‘2 x— =
2 4

And o,+o0,=0,+0,
IES-22. Ans. (¢)
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IES-23. Ans. (b) It is a case of pure shear. Just put o, = -0,
IES-24. Ans. (¢)

IES-25. Ans. (a)

S K Mondal’s

Tay

Y A

A Oy

[+

——

N [\ &

XX
¢—J~ 0 Ml X N/ (o Ty
L 1t N}

Tyx P B(Smax.0) .

L ] AT min,0) 0 5 Oy

20 M
M (O [Tuy)

IES-25(i). Ans. (b)
o, =60MPa,o, =120MPa and 7., =40MPa .

2 2
. 0,—0O 60-120
radius :\/[Tyyj +Txy2 :\/(Tj +402 =50

IES-25(ii). Ans. (b)
IES-25(iii). Ans. (c)
IES-26. Ans. (a)

4k

2 2
G, +0 G, —GC
y 2 x " Py 2
(GX' B 2 J ' TX,y' B \/( 2 J ’ Txy

.. Radius of the Mohr Circle
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TES-27. Ans. (¢) Radius of the Mohr circle

2 2
=N[G*2”V] +7,7 |10 =N(%j +402]/1o ~50/10 =5¢m

+ -
TES-28. Ans. (d) Centre of Mohr’s circle is [U" 5 Iy ,0] = (200 5 100 ,oj = (50,0)

IES-29. Ans. (d)

IES-30. Ans. (¢)

IES-30(i). Ans. (b)The construction is for variations of stress in a body in different planes.

IES-31. Ans. (b)

IES-32. Ans. (¢)

IES-33. Ans. (d)

IES-33a. Ans. (a)lt’s very simple. in plastic deformation there is no change in volume. Therefore

volumetric strain will be zero. &, +¢&, +&, =0

Or you may use poisson’s ratio = 0.5 and calculate principal strains.
IES-33b. Ans. (¢)

IES-34. Ans. (a)

IES-34a. Ans. (d)

IES-34b. Ans. (d)

IES-34c. Ans. (a)

IES-35. Ans. (@) 7, = & — & =100 -(-200)x10° =300x10°°

don't confuse withMaximum Shear stress(7z,,, ) = i ;GZ
in strain 7;" = % andr, = % that is the difference.

IES-36. Ans. (d)

STS b Ly e . = 1000x10°® —(~600x10°) = 1600x10°®
2 2 v = ST

IES-37. Ans. (c) Three strain gauges are needed on a plane surface to determine the principal strains and
their directions.

IES-38. Ans. (b) ¢, = % — MU—EZ and ¢, = % — ,u% From these two equation eliminate o, .
IES-38(i). Ans. (b)

IES-38(ii).Ans. (a)

IES-39. Ans. (a)

IES-40. Ans. (a)

1AS

IAS-1. Ans. (b) Weknow o, = ocos’8d and r=osindcosd
100=0cos?’45 or o =200

7 =200sin45co0s45 =100
IAS-2. Ans. (¢)
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-

& o
¥

9

IAS-3. Ans. (b) It is a case of pure shear so principal planes will be along the diagonal.
IAS-4. Ans. (d)Stress in x direction =ox

Theref & =—2 8_—GX g——a"
erefore X—E, y—,uE, =—U
IAS-5. Ans. (c)
8}6}( g.w gXZ
£ €, and ¢ = Vo
w “yz xy
£ £, 8.

7, =G 7, =100x10" x(0.004x 2) MPa=800MPa

IAS-6. Ans. (d) 7, = 272 =7 ‘;“’1) _o,

_o,-0O
IAS-7. Ans. (a) 7, =— 5 2 Maximum normal stress will developed if o, = -0, =&

2 2
oO.—0 — —
JAS-8. Ans. (c)Tmax—\/( - yJ ”WZZJ[%) 430 = 50 MPa

IAS-9. Ans. (¢)or=100MP:.7 =20 mP,

2
=Tt (ij .
/ J” ‘/ 100 50+ 2900)MPa

_o,+to, o,
IAS-10. Ans. (a) T, 5 5 cos20

[We may consider thisas 7, =0] o, =0,=0(say) So o, =0 foranyplane

IAS-11. Ans. (d) They are same.
IAS-12. Ans. (b)

+ — —
- :[O'x 2%]_{% 20‘ jco g = 40042r300+4002300CO82X450 —350MPa

IAS-13. Ans. (a)
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+o0, +
€,=¢, +€, +ezzm—2—’u(o—x+a +O'Z)
E E v
+o,+ -
:(1_2ﬂ){ax c;y UZJ:[60+1202 50](1—2x0.35):9><105

IAS-14. Ans. (d)
IAS-15. Ans. (b)
IAS-16. Ans. (d)
fi—1,

IAS-17. Ans. (d) Maximum shear stress is

IAS-18. Ans. (d) Centre(%,oj - (2—;0,0) ~(10)

2 2
radius = ’[0&20}} +75 =,/(%} +0=1

TAS-19. Ans. (¢) Mohr’s circle will be a point.

. _ o, -0C ,
Radius of the Mohr’s circle = ( 5 yj +7,, ..1,=0ando, =0, =0

TIAS-20. Ans. (b)

IAS-21. Ans. (b)
IAS-22. Ans. (c) R is false. Stress in one plane always induce a lateral strain with its orthogonal plane.

Previous Conventional Questions with Answers

Conventional Question IES-1999

Question: What are principal in planes?

Answer: The planes which pass through the point in such a manner that the resultant stress across
them is totally a normal stress are known as principal planes. No shear stress exists at the
principal planes.

Conventional Question IES-2009
Q. The Mohr’s circle for a plane stress is a circle of radius R with its origin at + 2R on ¢

. N . .
axis. Sketch the Mohr’s circle and determine 6, ,., G,in> Cav> ltxylmax for this

situation. [2 Marks]

Ans. Here o, =3R

Omin = R
3R+ R
GO‘V = 2 =

Omax —
and t,, = = =R
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Conventional Question IES-1999

Question:

Answer:

Direct tensile stresses of 120 MPa and 70 MPa act on a body on mutually
perpendicular planes. What is the magnitude of shearing stress that can be applied
so that the major principal stress at the point does not exceed 135 MPa? Determine
the value of minor principal stress and the maximum shear stress.

Let shearing stress is 'v' MPa. 70Mpa
The principal stresses are 3
_ 120470 [120-70)°

%12 = 2 2 ’ 120Mpa 120Mpa
Major principal stress is 3 J

120470 [(120-70)
o, = + +7

2 2 B

=135(Given) or,7 = 31.2MPa. 70Mpa

Minor principal stress is
2
5, = 120+70 /(120-70 +31.9% — 55MPa
2 2
, _0i70, _ 135-55
max 2 -

=40MPa

Conventional Question IES-2009

Q.

Ans.

The state of stress at a point in a loaded machine member is given by the principle
stresses. [ 2 Marks]

(i) What is the magnitude of the maximum shear stress?
(ii) What is the inclination of the plane on which the maximum shear stress acts
with respect to the plane on which the maximum principle stress o, acts?

(i) Maximum shear stress,
-y _ 600-[-600)
2 2
=600 MPa

(ii) At 0 =45° max. shear stress occurs with 0, plane. Since 0, and O, are principle stress

T=

does not contains shear stress. Hence max. shear stress is at 45° with principle plane.

Conventional Question IES-2008

Question:

A prismatic bar in compression has a cross- sectional area A = 900 mm? and carries
an axial load P=90 kN. What are the stresses acts on
(i) A plane transverse to the loading axis;
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(ii) A plane at 0=60°to the loading axis?

Answer: (1) From figure it is clear A plane
transverse to loading axis, 0 =0°
1
Lo, = P c0s26=-20000 oy
A 900
=—100N / mm? > On
P 90000 _.P ) g -—P
and T=—Sin26=———xsin8=0 1
2A 2x900 1
(ii1)) A plane at 60° to loading A
axis, !
0=90°- 60° = 30°
o, = P cos29=-20000 55230
A 900
= —75N | mm?
T= isin29 =— 90000 sin2x 60°
2A 2x900
= —43.3N/ mm®

Conventional Question IES-2001
Question: A tension member with a cross-sectional area of 30 mm?2 resists a load of 80 kN,
Calculate the normal and shear stresses on the plane of maximum shear stress.

Answer: .= Ecos2 0 T= isin 20
A 2A

/ G,

P «——

For maximum shear stress sin20 =1, or, 0 = 45°

80 x10°
(0n)=—%5—

Conventional Question IES-2007
Question: At a point in a loaded structure, a pure shear stress state 7 = 1400 MPa prevails
on two given planes at right angles.
(i) What would be the state of stress across the planes of an element taken at +45°
to the given planes?
(ii) What are the magnitudes of these stresses?

3
x cos?45=1333MPa and 7__, :E:M:B%MPa
2A 30x2

Answer: (1) For pure shear
0, =-0,; T = £0, = £400MPa
=0 \[ 5% &7

N/ ANV

5 ‘5&‘: 0 Mohr's Circle In pure shear

72\ = (.
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(i1) Magnitude of these stresses
o, =T1,Sin20 =7, Sin90° =1, =400MPa and 7= (-7, c0s20)=0

Conventional Question IAS-1997

Question: Draw Mohr's circle for a 2-dimensional stress field subjected to
(a) Pure shear (b) Pure biaxial tension (¢) Pure uniaxial tension and (d) Pure
uniaxial compression

Answer: Mohr's circles for 2-dimensional stress field subjected to pure shear, pure biaxial tension, pure
uniaxial compression and pure uniaxial tension are shown in figure below:

14 1 T d }e

2 D I W A , .
\0 o, o U Ca

o, b/
| 03 | O o

© Ll

(a) (&)
Conventional Question IES-2003
Question: A Solid phosphor bronze shaft 60 mm in diameter is rotating at 800 rpm and
transmitting power. It is subjected torsion only. An electrical resistance strain
gauge mounted on the surface of the shaft with its axis at 45° to the shaft axis, gives
the strain reading as 3.98 x 10-4. If the modulus of elasticity for bronze is 105 GN/m?
and Poisson's ratio is 0.3, find the power being transmitted by the shaft. Bending
effect may be neglected.
Answer:

L Zﬁ.xisurtm Shaft

L ._
V. V)

e r
Let us assume maximum shear stress on the cross-sectional plane MU is 7. Then

Principal stress along, VM = -%,/472 = -7 (compressive)

Principal stress along, LU = %\/472 = 7(tensile)

Thus magntude of the compressive strain along VM is

=é(1+“): 3.98x10°*
3.98x10°* x(105><109)

ort= =32.15MPa

(14+0.3)
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.. Torque being transmitted (T) = 7 x % xd®
=(32.15%10°) x%x0.063=1363.5 Nm

..Power being transmitted, P =T.w=T.[%] =1363.5><[

Z“Xgoo]w — 114.23kW

Conventional Question IES-2002

Question: The magnitude of normal stress on two mutually perpendicular planes, at a point in
an elastic body are 60 MPa (compressive) and 80 MPa (tensile) respectively. Find
the magnitudes of shearing stresses on these planes if the magnitude of one of the
principal stresses is 100 MPa (tensile). Find also the magnitude of the other
principal stress at this point.

Answer: Above figure shows stress condition assuming \
shear stressis' 7 xy' 80Mpa
JXY
Principal stresses
2
c,+0 c,—
01’2 — y :l: y +Tfy 60Mpa:le 2 60Mpa
2 2 Jy
2
—60+80 —60—80
or,c,, = + + —|—Tiy
’ 2 2 J
3 80Mpa
—60+80 —60—80
or,6,, = 2+ + \/[ > ] + Tiy

'

To make principal stress 100 MPa we have to consider '+'.

.6, =100MPa =10+,/70° +72 ; or, T, =56.57MPa

Therefore other principal stress will be

2
5 _ —60+80 |(—60—80 (5657
g 2 2

i.e. 80 MPa(compressive)

Conventional Question IES-2001

Question:A steel tube of inner diameter 100 mm and wall thickness 5 mm is subjected to a
torsional moment of 1000 Nm. Calculate the principal stresses and orientations of
the principal planes on the outer surface of the tube.

Answer:  Polar moment of Inertia (J)=%[(o.1 10)" - (0.100)°| = 4.56x 10 °m*

T 1 T.R 1000x(0.055) 5mm
Now —=—or J=—"-= - /
J R J 4.56x10
= 12.07MPa
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27,
Now,tan26 = Y —x,
G, —0,

gives 6, =45%0r 135°
.0, =1,,Sin20 =12.07 x sin 90°
=12.07 MPa
and ¢, = 12.07 sin270°
=—12.07MPa

Conventional Question IES-2000

Question: At a point in a two dimensional stress system the normal stresses on two mutually

perpendicular planes are o and o, and the shear stress is 7 xy. At what value of

shear stress, one of the principal stresses will become zero?
Answer: Two principal stressdes are

2
6. .+o G -0,
(512: X y:l: [ al }]—I-’Tz,
> 2 Y

2

Considering (-)ive sign it may be zero

2 2 2
G, —O, o, +0 G, —O
=.||—=| +72 or, Y =|—2| +72
2 ’ 2 2 !

2 2
6,+0o G,—0,
“‘2 y] —[ * }] or,7, =66, o7 =%,/00

Xy

G, +0,

Conventional Question IES-1996

Question: A solid shaft of diameter 30 mm is fixed at one end. It is subject to a tensile force of

10 kN and a torque of 60 Nm. At a point on the surface of the shaft, determine the
principle stresses and the maximum shear stress.
Answer: Given: D =30 mm = 0.03 m; P =10 kN; T= 60 Nm

Principal stresses(o;,0,) and maximum shear stress(z,,,, ):

. 10)(103 6 2 2
Tensile stress 0, =0, =———=14.15x10°N/m” or 14.15 MN/m
T 2
~x0.03
4
T
a, o,
T
. . T T
As per torsion equatlon,j =E
- Shear stress, r= R - TR _ 00x0015 44 55 105N/ m?
b Zpt L (0.03)
32 32

or 11.32 MN/m?
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The principal stresses are calculated by using the relations:

2
o.to o, -0
0"2:( 2 y]i\/[( 2 VHHEV

Here o, =14.15MN/m?,c, =0;7,, =7=11.32 MN/m’
2
0'1,2=14'15i 14.15 +(11_32)2
2 2

=7.07 £13.35=20.425 MN/m?,-6.275MN / m?.
Hence, major principal stress, o, =20.425 MN/m?(tensile)
Minor principal stress, o, =6.275MN/m? (compressive)
o,—c, 24.425-(-6.275)

Maximum shear stress,z, , = 5 = 5 =13.35mm / m?

Conventional Question IES-2000

Question:

Two planes AB and BC which are at right angles are acted upon by tensile stress of
140 N/mm?2 and a compressive stress of 70 N/mm? respectively and also by shear
stress 35 N/mm2. Determine the principal stresses and principal planes. Find also
the maximum shear stress and planes on which they act.

Sketch the Mohr circle and mark the relevant data.

Answer:

Given 7ON/mnv

0,=140MPa(tensile) c ‘ B

0,=-70MPa(compressive) .
35NmMm

7, = 39MPa 140N/mn

Principal stresses; c,,0,;

2

2
6, +o0o G, —OC
We know that, 6,, =— 5 Y i\/[ x y] +72,

B 140_70i [140—1—70
2 2

Therefore 6,=145.7 MPa and ¢, =—75.7MPa

2
] +35° =35+110.7

Position of Principal planes 6,,6,

2
tan20, =~ — _2X3% _ 3333
c,—o, 140+70
Maximum shear stress, 7, = o ;2 _145 275'7 =110.7MPa

Mohr cirle:

OL=c, =140MPa

OM =c, =—-70MPa

SM=LT =71, =35MPa u
Joining ST that cuts at 'N'

SN=NT=radius of Mohr circle =110.7 MPa

OV=c, = 145.7MPa
OV =0, =—75.7MPa
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Conventional Question IES-2010

Q6. The data obtained from a rectangular strain gauge rosette attached to a stressed
steel member are ¢, =-220x 10’6,545 =120x10"° andégy, =220 x107°. Given that the

value of E = 2x10° N/mm?® and Poisson’s Ratio n=0.3, calculate the values of

principal stresses acting at the point and their directions. [10 Marks]
Ans. Use rectangular strain gauge rosette

Conventional Question IES-1998
Question: When using strain-gauge system for stress/force/displacement measurements how
are in-built magnification and temperature compensation achieved?
Answer: In-built magnification and temperature compensation are achieved by
(a) Through use of adjacent arm balancing of Wheat-stone bridge.
(b) By means of self temperature compensation by selected melt-gauge and dual element-
gauge.

Conventional Question AMIE-1998

Question: A cylinder (500 mm internal diameter and 20 mm wall thickness) with closed ends is
subjected simultaneously to an internal pressure of 0-60 MPa, bending moment
64000 Nm and torque 16000 Nm. Determine the maximum tensile stress and
shearing stress in the wall.

Answer: Given: d =500 mm =05 m; t =20 mm =002 m; p =060 MPa = 0.6 MN/m2;
M = 64000 Nm = 0064 MNm; T= 16000 Nm = 0016 MNm.
Maximum tensile stress:

First let us determine the principle stresses 0, and o, assuming this as a thin cylinder.

We know, o, =Pd_06x05_ 2 qynyme
2t 2x0.02
and o, =Pd_00x05_ 575y m2
4t 4x0.02

Next consider effect of combined bending moment and torque on the walls of the cylinder.
Then the principal stresses o', and o', are given by

o' = 7:(163 [M+ M +T2}
and o, —E[M—\/W +T?]

- d?
' 16 2 2 2
o' =——[0.064+0.0647 +0.016” |~5.20MN/m
7z><(0.5)
and o', = 1—63[0.064 ~+/0.0642 +0.016? } =-0.08MN/m?
7Z'><(0.5)
Maximum shearing stress,z, . :
We Know, 7, = %
o, =0,+0',=3.75-0.08 =3.67MN/m*(tensile)
T = 1279-367 _ 4 s6MN/m?
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3. Moment of Inertia and Centroid

Theory at a Glance (for IES, GATE, PSU)
3.1 Centre of gravity

The centre of gravity of a body defined as the point through which the whole weight of a body may be

assumed to act.
3.2 Centroid or Centre of area

The centroid or centre of area is defined as the point where the whole area of the figure is assumed to be

concentrated.

3.3 Moment of Inertia (MOI)

e About any point the product of the force and the perpendicular distance between them is known as
moment of a force or first moment of force.

e This first moment is again multiplied by the perpendicular distance between them to obtain second
moment of force.

e In the same way if we consider the area of the figure it is called second moment of area or area
moment of inertia and if we consider the mass of a body it is called second moment of mass or mass
moment of Inertia.

o Mass moment of inertia is the measure of resistance of the body to rotation and forms the basis
of dynamics of rigid bodies.

e Area moment of Inertia is the measure of resistance to bending and forms the basis of strength

of materials.

3.4 Mass moment of Inertia (MOI)

_ 2
1 —Zmﬂ}
i

e Notice that the moment of inertia ‘T’ depends on the distribution of mass in the system.

e The furthest the mass is from the rotation axis, the bigger the moment of inertia.

e For a given object, the moment of inertia depends on where we choose the rotation axis.

e In rotational dynamics, the moment of inertia T’ appears in the same way that mass m does in

linear dynamics.
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Chapter-3 Moment of Inertia and Centroid
e Solid disc or cylinder of mass M and radius R, about perpendicular axis through its centre,

I =1MR2
2

e Solid sphere of mass M and radius R, about an axis through its centre, I = 2/5 M R2
e Thin rod of mass M and length L, about a perpendicular axis through
its centre.
1 L

I=—ML
12

e Thin rod of mass M and length L, about a perpendicular axis through its

end. 4—-{_
1
I=—MI’
3
3.5 Area Moment of Inertia (MOI) or Second moment of area
e To find the centroid of an area by the first moment of the area ' = W
about an axis was determined (] x dA) _// A \
- |ll '\I
o Integral of the second moment of area is called moment of 777777 o e |
inertia (| x2dA) \\\ ; /f
e Consider the area (A) . g
e By definition, the moment of inertia of the differential area o, =
about the x and y axes are dlx and dlyy
. dlLx = y2d.AIxx = ,“ y2 dA
o dI, =x2dALy =] x2dA
3.6 Parallel axis theorem for an area
Total Area = A

The rotational inertia about any axis is the sum of
second moment of inertia about a parallel axis

through the C.G and total area of the body times

square of the distance between the axes. X ; . C T : X
InN =Icc + Ah? T \_\_)
h
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3.7 Perpendicular axis theorem for an area

If x, y & 2z are mutually perpendicular axes as shown, then o pe
I(J)=1,+1I, i
Z-axis is perpendicular to the plane of x — y and vertical to this page as

shown in figure. @

® To find the moment of inertia of the differential area about the pole (point of origin) or z-axis, (r) is
used. (r) is the perpendicular distance from the pole to dA for the entire area
J=[r2dA = [ (x2+y2)dA = I + Iy(since r2 =x2 + y2)

Where, J = polar moment of inertia

3.8 Moments of Inertia (area) of some common area
(i) MOI of Rectangular area Y

Moment of inertia about axis XX which passes

through centroid. &dy

Take an element of width ‘dy’ at a distance y

from XX axis.

¥
.". Area of the element (dA) =b X dy. h
and Moment of Inertia of the element about XX rC.G.

axis=dA x y* =b.y’ dy ;
.. Total MOI about XX axis (Note it is area

moment of Inertia)

% % bh’ Y
I, = I by*dy = 2! by*dy = T | b |
_% 0

Ixx e
12

Similarly, we may find, I = hb’
» 12

3 3

.. Polar moment of inertia (J) = L+ Iyy = bI}; + };I;
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If we want to know the MOI about an axis NN passing Y

through the bottom edge or top edge. N ‘
Axis XX and NN are parallel and at a distance h/2. £ !

Therefore Inn = Ixt+ Area X (distance) 2 h y

3 2 3
CICRNN AP (8 R
12 3

|Z

Case-I:Square area

a4

Ixx ~ T a
12

>
|
|
|
|
|
B =<—t——4--|--=
I
I
|
|
X

T
.

Case-II:Square area with diagonal as axis / \
4 d d
a
12 K- oK

Case-III:Rectangular area with a centrally le B N
rectangular hole v | f
Moment of inertia of the area = moment of inertia of BIG
rectangle — moment of inertia of SMALL rectangle
X s A b H
BH? bh? :
I_ = _ l
12 12
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(ii) MOI of a Circular area

The moment of inertia about axis XX this passes through
the centroid. It is very easy to find polar moment of inertia
about point ‘O’. Take an element of width ‘dr’ at a distance
T’ from centre. Therefore, the moment of inertia of this
element about polar axis

d() =d(,, +1I,)=areaof ring x (radius)®

or d(J) =2zrdrxr®

Integrating both side we get

R 4 4
J =I2ﬁr3dr _ri_zD
0 2 32
Due to summetry I, =1
J zD'

Therefore, I =1_ = —
= > 2 64

zD*
= > 64

Case-I: Moment of inertia of a circular

area with a concentric hole.

1

Moment of inertia of the area = moment of inertia of

BIG circle — moment of inertia of SMALL circle.

o= zD* _ﬁd4 d
Y 64 64 l

T
=_D4_d4
64( )

andJ = 2 (D' —d*)
32

Case-II:Moment of inertia of a semi-

circular area.

I, = % of the momemt of total circular lamina

3 lx zD* _7rD4
2 64 128

We know that distance of CG from base is

4r 2D
g = g = h(say)

i.e. distance of parallel axis XX and NN is (h)
.. According to parallel axis theory
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Iy =1, + Area x (distance)’

4 2
or 7D _ I, L1 =D x(h)’
128 2\ 4

zD* 1 [;TDZJ (21))

or =I_  +=x x| —

128 2 4 3
_ 4
I_=0.11R

Case — I1I: Quarter circle area

or

Ixx = one half of the moment of Inertia of the Semi-

circular area about XX.

I, =%x(0.11R4) = 0.055 R*

I, =0.055R"

Inn= one half of the moment of Inertia of the Semi-

T .

circular area about NN.

1 »D* D!
sy == x—— =
2 64 128

(iii) Moment of Inertia of a Triangular area
(a) Moment of Inertia of a Triangular area of
a axis XX parallel to base and passes through

C.G.

bh?
I.. =
X 36

(b) Moment of inertia of a triangle about an

axis passes through base

bh’
Iy = 12 N---. N
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(iv) Moment of inertia of a thin circular ring: Y
Polar moment of Inertia ;
(J) =R* xarea of whole ring
=R*x27Rt=27R%t
X- =
|
Y

(v) Moment of inertia of a elliptical area

130 mm
- —Neutral Axis

3.9 Radius of gyration

Consider area A with moment of inertia I... Imagine
that the area is concentrated in a thin strip parallel to

the x axis with equivalent ..
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I = kixA or

kxx =radius of gyration with respect to the x axis.

ic ix
X @] X
Similarly y
kg %
0 :% x
%
A ;i.:-'.'l

B =R 4R
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Chapter-3 Moment of Inertia and Centroid

OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 25-Years GATE Questions

Moment of Inertia (Second moment of an area)

GATE-1. The second moment of a circular area about the diameter is given by (D is the
diameter) [GATE-2003]

zD* zD* zD* zD*
b d
(b) 16 (© 39 (d) o

(a)

GATE-2a. The area moment of inertia of a square of size 1 unit about its diagonal is:

[GATE-2001]
1 1 1 1
(a) 3 (b) 1 (C)E (d) A

GATE-2b. Polar moment of inertia (Ip), in cm¢, of a rectangular section having width, » = 2 cm and

depth,d = 6 cm is [CE: GATE-2014]

GATE-2¢. The figure shows cross-section of a beam subjected to bending. The area moment of

inertia (in mma3) of this cross-section about its base is [GATE-2016]

¥

A

“@
oA
%

— 10 —*|

GATE-2d. The cross-sections of two solid bars made of the T
same material are shown in the figure. The square \
cross-section has flexural (bending) rigidity I,
while the circular cross-section has flexural

fe— 0 —f

All dimensions are in mm

rigidity I,. Both sections have the same cross- '\\\ //j
sectional area. The ratio I,/I, is o S
(a)l/m (b) 2/m (c) /3 (d) /6 [GATE-2016]

Radius of Gyration

Data for Q3-Q4 are given below. Solve the problems and choose correct
answers.

A reel of mass “m” and radius of gyration “k” is rolling down smoothly from rest with one end of
the thread wound on it held in the ceiling as depicted in the figure. Consider the thickness of
the thread and its mass negligible in comparison with the radius “r” of the hub and the reel

mass “m”. Symbol “g” represents the acceleration due to gravity. [GATE-2003]

For-2020 (IES,GATE, PSUs) Page 146 of 493 Rev.0



Chapter-3 Moment of Inertia and Centroid

e

thread

1" (hub radius)

GATE-3. The linear acceleration of the reel is:
2

_ar D L gk qQ e
ey Ay Ol ) D)

GATE-4. The tension in the thread is:
mgr® mgrk mgk® mg
a) —2 b) ————— c)—2o" d ———
© ) O ) O ) @)

. . d ..
GATE-5. For the section shown below, second moment of the area about an axis Zdlstance

above the bottom of the area is [CE: GATE-2006]
b
d
bd? bd? 7bd? bd?
et b d) ——
(@) 18 (0) T (c) 18 (@) 3

GATE-6. A disc of radius r has a hold of radius gcut-out as shown. The centroid of the

remaining disc(shaded portion) at a radial distance from the centre “0” is

[CE: GATE-2010]

r r r

Previous 25-Years IES Questions

Centroid
IES-1. Assertion (A): Inertia force always acts through the centroid of the body and is
directed opposite to the acceleration of the centroid. [TES-2001]
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Moment of Inertia and Centroid
Reason (R): It has always a tendency to retard the motion.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOTthe correct explanation of A
(¢) Aistrue but R is false
(d) Aisfalse but R is true

Radius of Gyration

IES-2.

IES-3.

IES-4.

Figure shows a rigid body of mass
m having radius of gyration k
about its centre of gravity. It is to
be replaced by an equivalent
dynamical system of two masses
placed at A and B. The mass at A

_-.O

should be:
(a)axm (b) bxm
a+b a+bd A@® @Ii-_-
O aavd (d) m.b je— a —de—— b——
3 b 2 a e l —3

[TES-2003]
Force required to accelerate a cylindrical body which rolls without slipping on a
horizontal plane (mass of cylindrical body is m, radius of the cylindrical surface in
contact with plane is r, radius of gyration of body is k and acceleration of the body is
a) is: [TES-2001]
@ m(k*/r*+1).a () (mk*/1*).a (c) mk’.a (@ (mk*/r+1).a

A body of mass m and radius of gyration k is to be replaced by two masses mi; and m:
located at distances hi and h: from the CG of the original body. An equivalent

dynamic system will result, if [TES-2001]
@h +h =k () h2 +h? =k* © hh, = k* @ Jhh, =k

Previous 25-Years IAS Questions

Radius of Gyration

IAS-1.

A wheel of centroidal radius of gyration 'k' is rolling on a horizontal surface with
constant velocity. It comes across an obstruction of height 'h' Because of its rolling
speed, it just overcomes the obstruction. To determine v, one should use the principle

(s) of conservation of [TAS 1994]
(a) Energy (b) Linear momentum
(c) Energy and linear momentum (d) Energy and angular momentum

OBJECTIVE ANSWERS

GATE-1. Ans. (d)

4 4
GATE-2a. Ans. (¢) [, = — = (ON

12 12
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GATE-2b. Ans. 40 cm*use I, =1, + 1,
GATE-2¢. Ans. 1875.63 (Range given (1873 to 1879)

i zd* wd® (WY
1= - — x| —
3 64 4 \2
10x10° zx8 =zx8 (107
= - - x| — | mm
3 64 4 2
=1875.63mm"

MOI of rectangular area = bh3/12 about its base and bh3/12 about its CG.
MOI of circular area = nd4/64 about its CG. But according to parallel axes theorem
about base it must be added by area X (distance)?
Area moment of Inertia is the measure of resistance to bending and forms the
basis of strength of materials.

GATE-2d. Ans. (c)

GATE-3. Ans. (a) For downward linear motion mg-T = mf, where f = linear tangential acceleration = ra, a

= rotational acceleration. Considering rotational motion Tr = Ia.

2
or, T= mk? xiztherefore mg—T = mf gives f= —5/ ___
r (r2 + kz)
thread
reel
T —
P /-" (hub radius)
mg
2 2
GATE-4. Ans. (¢) T = mk* x - = mi? &7 _____m&k
r

r? (r2 +k2) - (r2 +k2)
GATE-5. Ans. (¢)
Using parallel axis theorem, we get the second moment of inertia as
bd® (d djz bd®  bd’  Thd’
= + bx = =

I ¢ 2 +
12 12 16 48

2 4
GATE-6. Ans. (¢)
The centroid of the shaded portion of the disc is given by
A x + A x,

A +A,
where x is the radial distance from Q.
A = nr’; x, = 0;
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=

IES-1. Ans. (¢)

IES-2. Ans. (b)
IES-3. Ans. (a)
IES-4. Ans. (¢)
IAS-1. Ans. (a)

Moment of Inertia and Centroid

4

o T
,=—
2

w: r o

X = 2 = 2

9 r 3nr

-

r
x:—_
6

It has always a tendency to oppose the motion not retard. If we want to retard a motion
then it will wand to accelerate.

——

T -

Previous Conventional Questions with Answers

Conventional Question IES-2004
Question: When are I-sections preferred in engineering applications? Elaborate your answer.
Answer: I-section has large section modulus. It will reduce the stresses induced in the material.Since I-

section has the considerable area are far away from the natural so its section modulus
increased.
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Diagram

4. Bending Moment and Shear Force

Theory at a Glance (for IES, GATE, PSU)

4.1 Shear Force andBending Moment

At first we try to understand what shear force is and what is bending moment?

We will not introduce any other co-ordinate system.
We use general co-ordinate axis as shown in the
figure. This system will be followed in shear force and
bending moment diagram and in deflection of beam.
Here downward direction will be negative 1.e.
negative Y-axis. Therefore downward deflection of the

beam will be treated as negative.

Some books fix a co-ordinate axis as shown in the
following figure. Here downward direction will be
positive 1.e. positive Y-axis. Therefore downward
deflection of the beam will be treated as positive. As
beam is generally deflected in downward directions
and this co-ordinate system treats downward
deflection is positive deflection.

Consider a cantilever beam as shown subjected to
external load ‘P’. If we imagine this beam to be cut by
a section X-X, we see that the applied force tend to
displace the left-hand portion of the beam relative to
the right hand portion, which is fixed in the wall.
This tendency is resisted by internal forces between
the two parts of the beam. At the cut section a
resistance shear force (Vx) and a bending moment
(My) is induced. This resistance shear force and the
bending moment at the cut section is shown in the
left hand and right hand portion of the cut beam.

Using the three equations of equilibrium
ZFX =0, ZFy =0 and ZM, =0
We find that V, =—P and M, =—P.x

In this chapter we want to show pictorially the

variation of shear force and bending moment in a

Y

» X

We use above Co-ordinate system

Y

Some books use above co-ordinate system

For-2020 (IES,GATE, PSUs) Page 151 of 493 Rev.0



Chapter-4 Bending Moment and Shear Force Diagram S K Mondal’s

beam as a function of X' measured from one end of

the beam.

Shear Force (V) = equal in magnitude but opposite in direction

to the algebraic sum (resultant) of the components in the REHEEN o
direction perpendicular to the axis of the beam of all external | | L
loads and support reactions acting on either side of the section

being considered.

Bending Moment (M) equal in magnitude but opposite in .
direction to the algebraic sum of the moments about (the :] I: C 4 G;’Ll_—_—_i
centroid of the cross section of the beam) the section of all ' ‘ i } ’
external loads and support reactions acting on either side of

the section being considered.

What are the benefits of drawing shear force and bending moment diagram?

The benefits of drawing a variation of shear force and bending moment in a beam as a function of ‘x'
measured from one end of the beam is that it becomes easier to determine the maximum absolute value of
shear force and bending moment. The shear force and bending moment diagram gives a clear picture in our
mind about the variation of SF and BM throughout the entire section of the beam.

Further, the determination of value of bending moment as a function of ‘x' becomes very important so as to
determine the value of deflection of beam subjected to a given loading where we will use the formula,
a’y

o

El—L=M,.

4.2 Notation and sign convention
e Shear force (V)

Positive Shear Force
A shearing force having a downward direction to the right hand side of a section or upwards to the
left hand of the section will be taken as ‘positive’. It is the usual sign conventions to be followed for

the shear force. In some book followed totally opposite sign convention.

For-2020 (IES,GATE, PSUs) Page 152 of 493 Rev.0
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The upward direction shearing The downward direction
force which is on the left hand shearing force which is on the
of the section XX is positive right hand of the section XX is

shear force. positive shear force.

Negative Shear Force
A shearing force having an upward direction to the right hand side of a section or downwards to the

left hand of the section will be taken as ‘negative’.

X
F |
|
|
|
[
[
[
[
.
[
|
|
|
|
X P
The downward direction The upward direction shearing

shearing force which is on the force which is on the right
left hand of the section XX is hand of the section XX 1is

negative shear force. negative shear force.

¢ Bending Moment (M)
Positive Bending Moment
A bending moment causing concavity upwards will be taken as ‘positive’ and called as sagging

bending moment.

X

i .>+M X Ct:j]) i

|

\

Sagging
X
If the bending moment of If the bending moment of A bending moment causing
the left hand of the section the right hand of the concavity upwards will be
XX is clockwise then itis a section XX is anti- taken as ‘positive’ and
positive bending moment. clockwise then it is a called as sagging bending

positive bending moment.  moment.
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Bending Moment and Shear Force Diagram
Negative Bending Moment

X
|
|
|
|
|
|
|

X
If the bending moment of
the left hand of the section
XX is anti-clockwise then
it is a negative bending

moment.

\

If the bending moment of
the right hand of the
section XX 1is clockwise
then it is a negative

bending moment.

S K Mondal’s

-M Q-M

Hogging

A Dbending moment causing
convexity upwards will be
taken as ‘negative’ and called

as hogging bending moment.

Way to remember sign convention

Remember in the Cantilever beam both Shear force and BM are negative (-ive).

4.3 Relation between S.F (V,), B.M. (M,) & Load (w)

dV

X:

dx

-W (load) The value of the distributed load at any point in the beam is equal to

the slope of the shear force curve. (Note that the sign of this rule may change depending on the sign

convention used for the external distributed load).

dM

X —
- VX The value of the shear force at any point in the beam is equal to the slope of the

dx

bending moment curve.

4.4 Procedure for drawing shear force and bending moment diagram

Construction of shear force diagram

For-2020 (IES,GATE, PSUs)

From the loading diagram of the beam constructed shear force diagram.

First determine the reactions.

Then the vertical components of forces and reactions are successively summed from the left end of
the beam to preserve the mathematical sign conventions adopted. The shear at a section is simply
equal to the sum of all the vertical forces to the left of the section.

The shear force curve is continuous unless there is a point force on the beam. The curve then
“jJumps” by the magnitude of the point force (+ for upward force).

When the successive summation process is used, the shear force diagram should end up with the
previously calculated shear (reaction at right end of the beam). No shear force acts through the

beam just beyond the last vertical force or reaction. If the shear force diagram closes in this fashion,
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then it gives an important check on mathematical calculations. i.e. The shear force will be zero at

each end of the beam unless a point force is applied at the end.

Construction of bending moment diagram

The bending moment diagram is obtained by proceeding continuously along the length of beam from

the left hand end and summing up the areas of shear force diagrams using proper sign convention.

The process of obtaining the moment diagram from the shear force diagram by summation is

exactly the same as that for drawing shear force diagram from load diagram.

The bending moment curve is continuous unless there is a point moment on the beam. The curve

then “jumps” by the magnitude of the point moment (+ for CW moment).

We know that a constant shear force produces a uniform change in the bending moment, resulting
in straight line in the moment diagram. If no shear force exists along a certain portion of a beam,
then it indicates that there is no change in moment takes place. We also know that dM/dx= Vx
therefore, from the fundamental theorem of calculus the maximum or minimum moment occurs

where the shear is zero.

The bending moment will be zero at each free or pinned end of the beam. If the end is built in, the

moment computed by the summation must be equal to the one calculated initially for the reaction.

4.5 Different types of Loading and their S.F & B.M Diagram

(i) A Cantilever beam with a concentrated load ‘P’ at its free end.

Bending Moment: \%[\)\]4 -PL

Shear force: Y
At a section a distance x from free end consider the forces to P-;-ix F &
the left, then (Vi) =- P (for all values of x) negative in sign X _JF‘
i.e. the shear force to the left of the x-section are in downward W 1 ; X
direction and therefore negative. 'EE“ 3 I[ZJ;;gram |

X

B.M Diagram

Taking moments about the section gives (obviously to the left

of the section) My = -P.x (negative sign means that the

S.F and B.M diagram

moment on the left hand side of the portion is in the

anticlockwise direction and is therefore taken as negative

according to the sign convention) so that the maximum

bending moment occurs at the fixed end i.e. Mmax = - PL(at x

=1)

(ii) A Cantilever beam with uniformly distributed load over the whole length
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When a cantilever beam is subjected to a uniformly = X % wiunit length
distributed load whose intensity is given w /unit length. 2
Shear force: PR / X
Consider any cross-section XX which is at a distance of x from Iy
the free end. If we just take the resultant of all the forces on
the left of the X-section, then VxT X
Vx=-w.x for all values of x'. ! gl e 3
Atx=0, Vxk=0 Mx S
Atx =1L, Vx=-wL (i.e. Maximum at fixed end) ; G
Plotting the equation Vx = -w.x, we get a straight line : : »X
because it is a equation of a straight line y (Vx) = m(- w) .x _ e
Bending Moment: B.M Diagram | :
Bending Moment at XX is obtained by treating the load to the

S.F and B.M diagram

left of XX as a concentrated load of the same value (w.x)
acting through the centre of gravity at x/2.

Therefore, the bending moment at any cross-section XX is

X  w.x?
M = (—W.X).E ==

X
Therefore the variation of bending moment is according toparabolic law.

The extreme values of B.M would be

atx=0, M=0

2
andx =L, M= -k
2
2
wL
Maximum bending moment, Mmax = at fixed end

Another way to describe a cantilever beam with uniformly distributed load (UDL) over it’s whole length.

w |

Y Y YYY ¥YYY VY VYVYUQyYy

R e

¥ _

L

(iii) A Cantilever beam loaded as shown below draw its S.F and B.M diagram

In the region 0 <x<a Y

Following the same rule as followed previously, we get P

V.=-P; and M =-P.x il X
In the regiona<x <L F'. L4.1

V,=-P+P=0; andM,=-P.x+P(x-a)=Pa
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V1 |

X
P10y
M 4 S.F. F]iagram |

<

B.M Diagram o

S.F and B.M diagram

(iv)Let us take an example: Consider a cantilever bean of 5 m length. It carries a uniformly distributed

load 3 KN/m and a concentrated load of 7 kN at the free end and 10 kN at 3 meters from the fixed end.

TkN 10kN 3 kKMN/m
il

L

TR

= =
.-| 5 m T_‘-.

Draw SF and BM diagram.

0 kN 3 kN/m
z

7 kN

Answer:In the region 0 <x<2m X
Consider any cross section XX at a distance x from free end. ! 1
Shear force (Vi) = -7- 3x !
So, the variation of shear force is linear. “iﬁl
at x=0, Vi=-TkN T_Emi.* 5m =
at x=2m,Vx=-7-3x2=-13kN |

at point Z Vx=-7-3x2-10=-23 Kn 2

TR

2
Bending moment (M) = -7x - (3x). g = —3% —-7x

So, the variation of bending force is parabolic.

atx =0, M:=0
2
atx=2m, Mx=-7x2—(3><2)x§=-20kNm

In the region2m<x<5m

10 kN . 3kN/m

Consider any cross section YY at a distance x from free end . I{NY 7 I
Shear force (Vx) =-7 - 3x — 10 = -17- 3x !

TERL R
=

A

So, the variation of shear force is linear.
=2 m-=
atx=2m, Vx=-23 kN < 5Em =

atx=5m, Vxi=-32kN

Bending moment (Mx) = - 7x — (3x) x (gj -10 (x - 2)

3% _17x+20
2
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So, the variation of bending force is parabolic.
3
at x = 2 m, MX=—§><22 —17x2+20 =-20kNm

atx =5m, My=-102.5 kNm

Y
10 kN 3 kN/m
X
X
-32 kN
X
E
=
L
L
—%x’ —1Tx+ 20 %
B.M Diagram

(v) A Cantilever beam carrying uniformly varying load from zero at free end and w/unit

length at the fixed end

wiunit length

s

[
- i -

Consider any cross-section XX which is at a distance of x from the free end.
. . W
At this point load (wx) = r.x

L L
Therefore total load (W) = J.dex = J.%.de = W7L
0 0

Shear force (V, ) =area of ABC (load triangle)

1(w wx?
=——|—x|x=-
2\ L 2L

.. The shear force variation is parabolic.
atx=0,V, =0

atx=L,V, = —% i.e. Maximum Shear force (V)= V2VL at fixed end
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Bending moment (Mx) =load x distance from centroid of triangle ABC

owx® (x) o wx
2L \3 6L
. The bending moment variation is cubic.

atx=0, M, =0

2

atx=L, M, = —% i.e. Maximum Bending moment (M, )
X
x | wiunit length
I
R
A LR
-— X _.-K :}
= L , =
- [ |
Vx WX I |
| T :x
; Parabolic wh
| 1 2
_ 5.F Diagram _L
M l e :
. GL —

Cubic

.

B.M Diagram

Alternative way : ( Integration method)

d(Vv
We know that M =—load = —ﬂ.x
dx L

or d(VX)z—%.x dx

Integrating both side

VX

Id(Vx)z—j%. X .dx

0

Again we know that
d(M 2
( X)_V WX

dx % 2L
2
or  d(M,)=-2X_g
2L
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Chapter-4 Bending Moment and Shear Force Diagram S K Mondal’s
Integrating both side we get (at x=0,M,=0)

M fwx?
[dM,)=—[——.dx

0 0 L
or M =-£><£=-WX3
7 2L 3 6L

(vi) A Cantilever beam carrying gradually varying load from zero at fixed end and w/unit

length at the free end

wiunit length

1

g™ L

2
Considering equilibrium we get, M, = % and Reaction (RA ) = WTL

Considering any cross-section XX which is at a distance of x from the fixed end.

w
At this point load (W, )= T.X

Shear force (V, ) =R, —area of triangle ANM

wh 1 (w wL  wx?
=—- —| —X|X=+— -

2 2L 2 2L
.. The shear force variation is parabolic.

atx=0,V, = +W7L i.e. Maximum shear force, V__, = +W7L

atx=L,V, =0

2
Bending moment (M, )=R, .x - %2?)( -M,

~wL o owx wl?

X
2 6L 3

.. The bending moment variation is cubic

2 2
at x=0, M, =—% .e.Maximum B.M. (M) ="

3
atx=L, M, =0
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XM
% | wiunit length
- |
i
A : B X
Z 3
‘= L : _‘_I
1|""|".I
= I wl _wx?
2 + jve I&
|
5.F Diagram |
M.t IM wl  owx _wl?
| :,x 2 :}?L 3
wiz -ive
3 B.M Diagram

(vii) A Cantilever beam carrying a moment M at free end

§

-_— L —

T AT

Consider any cross-section XX which is at a distance of x from the free end.
Shear force: Vx = 0 at any point.
Bending moment (Mx) = -M at any point, i.e. Bending moment is constant throughout the length.

X
M i
< | F K
_;,'E_x_-""'x .h
= . B =~
vV !
I |
Mx S.F Diagram
M//f/ffffh’f/z’f X
A A A M
] B.M Diagram

(viii) A Simply supported beam with a concentrated load ‘P’ at its mid span.

p
r—L;g—-;c—LIE—w

ES

Considering equilibrium we get, R,= Ry =

P

Now consider any cross-section XX which is at a distance of x from left end A and section YY at a
distance from left end A, as shown in figure below.

Shear force:In the region 0 <x < L/2

Vxi=Ra=+P/2 (it is constant)
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In the region L/2<x <L

P
Vi=Ra-P :E -P=-P/2 (itis constant)
Bending moment: In the region 0 < x < L/2

Mk = E .x  (its variation is linear)

atx=0, My=0 and atx=L/2 M :T l.e. maximum

_E
4

Maximum bending moment, M ma at x = L/2 (at mid-point)

In the region L/2<x <L

My=—x—-P(x - L/2)=7 - E .x (its variation is linear)

PL
atx=L/2,Mx=T and atx=L, Mx=0

X
¥ P Al
e O
A _’l B X
s S
RA X RE
.
|
p———, |
o L a
V4 !
¢ |
P2 // |
% o
-Pi2
Mx“ 5.F Diagram
PL
- 2 X
B.M Diagram
(ix) A Simply supported beam with a concentrated load ‘P’ is not at its mid span.
P
A sle—b |
N
I_r'" L -~

_ e P Pa
Considering equilibrium we get, Ra= T and RB:T

Now consider any cross-section XX which is at a distance x from left end A and another section YY at
a distance x from end A as shown in figure below.

Shear force: In the range 0 <x<a
Vi=Ra= +T (it is constant)
In the rangea<x <L

Pa .
Vi=Ra-P=- T (it is constant)
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Bending moment: In the range 0 <x<a

Mx =+Rax = T X (it 1s variation is linear)

Pab

atx=0,Mx=0 and atx=a, M« :T (i.e. maximum)
In the range a<x <L

M; = Ra.x — P(x- a)Z%.X —Px +Pa (Put b=L-a)

= ) _X
=Pa(l Pa(1 LJ)

Pab
at x =a, MX=T and at x=L, Mx=0

B

- = Pa
R, =—f x4 RE L
A L ¥ |

1 ® |
[ i ” I
i

|

N

M 4 S.F Diagram

"

B.M Diagram

S K Mondal’s

(x) A Simply supported beam with two concentrated load ‘P’ from a distance ‘a’ both end.

The loading is shown below diagram

Take a section at a distance x from the left support. This section is applicable for any value of x just to the

left of the applied force P. The shear, remains constant and is +P. The bending moment varies linearly from

the support, reaching a maximum of +Pa.

A section applicable anywhere between the two applied forces. Shear force is not necessary to maintain

equilibrium of a segment in this part of the beam. Only a constant bending moment of +Pa must be resisted

by the beam in this zone.
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Such a state of bending or flexure is called pure bending.

Shear and bending-moment diagrams for this loading condition are shown below.

&S e
A C 0] B
43—} (—a—}-
"||u||f.ih
+[
=X
S.F Diagram P
M.I.L
P.a
X

'B.M Diagram

(xi) A Simply supported beam with a uniformly distributed load (UDL) through out its length

w/unitlength

N e

< L .

We will solve this problem by following two alternative ways.
(a) By Method of Section

wL
Considering equilibrium we get Ra =Rp = 7

Now Consider any cross-section XX which is at a distance x from left end A.

Then the section view

A.uuuuu:t L) "
ikl |

> X%
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wL Y,
Shear force: Vx = o WX A wiunitlength
(i.e. S.F. variation is linear) A B X
e 1L wil
wL Ryl=— ' = IR e
at x=0, Vx=7 e— 2 —x——ay g 2
at x=1/2, Vx=0 < L g
L
at x=L, Va=-- ”:Ll
w .
e ‘?%% L
Bending moment: M, = — .x — i @j _wil -
2 2 S.F Diagram B3
i.e. B.M. iation i boli t
(e variation is parabolic) M, E

at x=0, Mx=0

2 :
at x=L, Mc=0 Y -
wi -
Now we have to determine maximum bending —? @
moment and its position. L] >

For maximum B.M: d(MX) =0 jie. V, =0 { d(MX) =V
ax ax
wlL L
or——-wx=0 or x=—
2 2
wl

Therefore,maximum bending moment, M max =

(a) By Method of Integration

Shear force:

We know that, ————~=—-w

ax

or d(V,)=-wdx

X

wlL
Integrating both side we get (at x =0, Vx =7)

Bending moment:

d(M,)

We know that, =V
dx
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or d(M,)=V,dx = (‘%L - wx) dx

Integrating both side we get (at x =0, Vx =0)

o 0
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(xii) A Simply supported beam with a gradually varying load (GVL) zero at one end and w/unit

length at other span.

w/unitlength

B

A
e

= L -

1
Consider equilibrium of the beam =§WL acting at a point C at a distance 2L/3 to the left end A.
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> M, =0gives
rR.L-ML
2 3
wL
orR, =—
"s

Similarly 3’M, =0 gives R, :W?"

W
The free body diagram of section A - XX as shown below, Load at section XX, (wx) ZTX

X X

6 wx |,

2F

The resulted of that part of the distributed load which acts on this free body is = %(X)%X - WX applied

at a point Z, distance x/3 from XX section.

wx?  wL  wx?

Shear force (Vx)= R, - I:? ol

Therefore the variation of shear force is parabolic

wlL
atx=0, Vi=—
6

wL
atx=L, Vyx=-—
3

and Bending Moment (M, ) =W—L.x WX X W—L.x _ WX
6 2L 3 6 6L

The variation of BM is cubic
atx=0, Mx=0
atx=L, M=0

. d(m,) - d(M,)
For maximum BM; ———==0 ie.V, =0 =V,
dx dx
wL wx® L
or —- =0 or x=—4%
6 2L 3
wo(LY) o wl?
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=X
»X
wh wx’
S.F Diagram *“"8 9
W M, = 2 x- 2
) 6 6L
WA
X

B.M Diagram

(xiii) A Simply supported beam with a gradually varying load (GVL) zero at each end and w/unit
length at mid span.

W
Y

4 2

gty |C e

wij L, E; R WL

R.-‘l = T i 2 e 2 :.__' B 4
. S 1 L wlL

Consider equilibrium of the beam AB total load on the beam =2 x E X E XW |= 7

Therefore R, =R; =WTL

2w
The free body diagram of section A —XX as shown below, load at section XX (wx) = T.X
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The resultant of that part of the distributed load which acts on this free body is

applied at a point, distance x/3 from section XX.
Shear force (Vx):
In the region 0 <x <L/2

wx?  wL  wx?

V)=R, - — =———
(Va) =R, L 4 L

Therefore the variation of shear force is parabolic.

wlL
atx=0, Vi= —
4

at x = L/4, V=0
In the region of L/2 <x <L
The Diagram will be Mirror image of AC.

Bending moment (Mx):
In the region 0 <x <L/2

3
M, ZW_L_X_(l_X,Mj_(X,g) WL wx
4 2 L 4 3L

The variation of BM is cubic
atx=0, Mx=0

2
at x = L/2, My =L
12

In the region L/2 <x <L
BM diagram will be mirror image of AC.

For maximum bending moment

—d(MX) =0 ie. V, =0 { d(M") = VX}
dx dx
wL  wx? L
—- =0 or x=—
4 2
2
andM,_,, = wi
12

wL’
max 1 2

N[
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W
Y,
B =
R E% L”z i L/:z ";"\'EE = E
AT Ty l= L =, 4
V, 4

. -
S.F Dlagra.w WL,

2
= Whg

X

B.M Diagram

(xiv) A Simply supported beam with a gradually varying load (GVL) zero at mid span and w/unit

]

| |
Ar n&';:!w

length at each end.

We now superimpose two beams as

(1) Simply supported beam with a UDL through Y

at its length
wiunit length

wlL
(VX )1 = 7—WX  EREERLIEEEAEREEEEE i RRLL
i X
wL  wx? A

wiunit length

And (2) a simply supported beam with a gradually varying load (GVL) zero at each end and w/unit length at
mind span.

In the range 0 <x <L/2

wL  wx?
V), ==
( X)2 4 L
wL wx®
M) =—x-
( X)Z 4 X 3L

Now superimposing we get
Shear force (Vx):
In the region of 0< x < L./2

For-2020 (IES,GATE, PSUs) Page 171 of 493 Rev.0



Chapter-4 Bending Moment and Shear Force Diagram S K Mondal’s

vt (37

w 2
= t(x - L/2)
Therefore the variation of shear force is parabolic
wL
atx =0, Vi=+—
4

atx = L/2, Vx = 0
In the region L/2 <x <L

The diagram will be mirror image of AC

Bending moment (Mx) = (M, )1 - (M, )2 =

_[W_L WXZJ_[WL wx3j_wx3 wx?  wl

X
2 2

X =
4 3L

The variation of BM is cubic

atx =0, M, =0

wx?

atx =L/2, M, =

wiunit length
ALLELARRIIERERIT REIT

W.
V. wiunit leng
il

S.F. ]}lagrpm i “.-5/

ud /” "r\

B.IN Diagram

i

X

4

(xv) A simply supported beam with a gradually varying load (GVL) wi/unit length at one end

and wsa/unit length at other end.

Y,
w./unit length

’ X
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At first we will treat this problem by considering a UDL of identifying (w1)/unit length over the whole

length and a varying load of zero at one end to (w2- wi)/unit length at the other end. Then superimpose the

two loadings.

(W,-w, ) /unit length

RE Ltdd ddtavq ! w /unit length
e

Consider a section XX at a distance x from left end A

(1) Simply supported beam with UDL (w1) over whole length

(Vo), =W—1L—W1x
(M,), =W71L.x—%w1x2

And(i1) simply supported beam with (GVL) zero at one end (ws- w1) at other end gives

(W, —w,) (W, —w,)x?

V) = _
( X)z 6 2L
L (w,—wy)x®
(M,), =(w, —W1).E.X—%
Now superimposing we get
wl w,lL x?
Shear force(V, ) =(V,),+(V,), :T1+ 62 -w,x—(w, - W1)Z

.. The SF variation is parabolic

atx = 0, VX:W—1L+W—2L=E(ZW1+WZ)
3 6 6

atx=L, V =- %(w1 +2w,)

X

Bending moment (M, ) =(M, )1 +(M, )2 _ W:;L .t W61L N —%W1X2 B (Wg'li/\ﬁ ].XS

.. The BM variation is cubic.

atx=0, M, =0
atx =L, M, =0
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»
w./unit length ;

, g g% ¥

v 4 W, /unit length

¥ Y Y YYY ¥YYYY

A

s B
L - | i
E(ZW#WE} ® Parabolic .
S.F Diagr;ﬁ\@_ _E(w1+2w,}
M Cubic =
@
B.M Diagram i

(xvi) A Simply supported beam carrying a continuously distributed load. The intensity of the

. . . X . .
load at any point is, w, =w sin (T) . Where ‘%X’ is the distance from each end of the beam.

W, =W Sin | 2X)
Y 2
A/lv/vl/l;_l L m
| X
S L
2 % .

We will use Integration method as it is easier iﬁ this case.
d(V) d(M,)
We know that ——= =load and —>=V
dx

d(Vv

Therefore M =—-w sin ”—Xj
dx L

d(V,)=-w sin(ﬁTdex

Integrating both side we get

wcos()
Id(Vx)z—szin(”ij dx or Vx=+—L+ A=+W—Lcos(”—XJ+A

[where, A = constant of Integration]
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Again we know that

d(M
M=VX or d(M,)=V, dx= W—Lcos X1+ Aldx
dx T L
Integrating both side we get
wL . (7X
sm( L j wl? X
M, =T = Ax+ B:—zsin(—]+Ax+ B
T T L
L

[Where B = constant of Integration]
Now apply boundary conditions

At x=0, Mx=0 and at x =1, M:=0
This gives A=0and B=0

.. Shear force (VX):W—Lcos(ﬂ—xj and V.. W aix -0
V4 L T
2
And M, ="t sin(”—xj
4 L
2
M. ="t atx=Le
T
W, =W Sin [ 7X)
Y S
m—l Y Yy m
I X
L L =
. 2 E 2
wL (=x)
V.,=—cos| —— |
F _-[—"T‘\'< @ Wb
5.F Diagram T
(7x)
LE )

B.M Diagram

(xvii) A Simply supported beam with a couple or moment at a distance ‘a’ from left end.

M

R

e 1!'!" l N L
5

Considering equilibrium we get
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> 'M, =0 gives

RgxL+M=0 or RE,:—%
and ) M, =0 gives

-R,xL+M=0 or R, =¥

Now consider any cross-section XX which is at a distance ‘x’ from left end A and another section YY at a

distance %’ from left end A as shown in figure.

¥
h
X Y,
" R | B
T — I ! =¥
—Xx—={ Ay
:E le——a ——h——f RE,:—E
A |_ |
L ; -

In the region 0 <x<a

M
Shear force (Vx) = Ra = f

Bending moment (Mx) = Ra.x = X

M
L
In the region a<x <L

M
Shear force (Vx) = Ra = t

M
Bending moment (Mx) = Rax—-M = r x-M
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y
X Y.
A ! ‘;:‘\1 : | B x
L—x—~= T i i
N [y PA— -:—h—;—:- R;z-i
AT | I L
L t
X =
VJL ?
Eie i -
5.F Diagram
M ry
/‘II‘IIII/I_.‘a

X

B.M Diagram

(xviii) A Simply supported beam with an eccentric load

=]
Eﬂ—ﬂ

A
|
%;12_»|<_Lz.ﬁ

Actual loaded beam

When the beam is subjected to an eccentric load, the eccentric load is to be changed into a couple = Force x
(distance travel by force)

=P.a (inthiscase) and a force=P
Therefore equivalent load diagram will be

E quivalent loaded beam

Considering equilibrium
> .M, =0 gives
-P.(L/2) + P.a+RexL=0
orRs =——Eand Ra+Rp=Pgives Ra= E+E
2 L 2 L

Now consider any cross-section XX which is at a distance ‘X’ from left end A and another section YY at a

distance X’ from left end A as shown in figure.
Y,
24 Y.
A | = P.a| B
. o B i "
L s
= Y
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In the region 0 <x <L/2

Shear fi (Vx) P + Pa
ear 1rorce x) =—_" T —
2 L

Bending moment (Mx) = Ra. x = (2 + %) . X

In the region L/2<x<L
P Pa P Pa
Shear force (Vx) =—+—-P =- —+—
2 L 2 L
Bending moment (Vx) =Ra. x - P.(x-1/2) -M

2 2 L
; il Y,
i | M= P.a| B
e, o G i N
L e
X i'_
VIL
P
L
AT
M 4 S.F. Diagram & Ok
i
4 . 2
PL_Pa
=X
B.M Diagram

4.6 Bending Moment diagram of Statically Indeterminate beam

S K Mondal’s

Beams for which reaction forces and internal forces cannot be found out from static equilibrium equations

alone are called statically indeterminate beam. This type of beam requires deformation equation in addition

to static equilibrium equations to solve for unknown forces.

Statically determinate - Equilibrium conditions sufficient to compute reactions.

Statically indeterminate - Deflections (Compatibility conditions) along with equilibrium equations

should be used to find out reactions.
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Chapter-4
Reaction Bending Moment

Type of Loading & B.M Diagram
M, ( F;_’ M
v e Ra=Rp= g PL

RS 8

M, %@oévmamamg V) M, )
S " WL wL

+ RA:RBZT Ma=Mp= —
7 Pont o contataxure /‘\ 1 2
B.M
BM
M, a B bt Pab’
e o ¢ *b—)E sz - _ a
RE — T R, == (Ga+h) Ma 2
Pa’ 2
+ R, = 3b+ _ _Pab
‘ - BM. -‘ B L3 ( a) MB—-_ L2
P
{'“'a {
E E :
R"‘ LE
\»N(#I U nit length
Rale Li2 Mg
A | : 3wl
Lo : : Ra=Rp= ——
: : ; 16
N LN Qo Sl
N/ ;
BE.M
W

Rev.0
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4.7 Load and Bending Moment diagram from Shear Force diagram
OR
Load and Shear Force diagram from Bending Moment diagram

If S.F. Diagram for a beam is given, then
(1) If S.F. diagram consists of rectangle then the load will be point load
(11) If S.F diagram consists of inclined line then the load will be UDL on that portion
(11) If S.F diagram consists of parabolic curve then the load will be GVL
(iv) If S.F diagram consists of cubic curve then the load distribute is parabolic.
After finding load diagram we can draw B.M diagram easily.
If B.M Diagram for a beam is given, then
(1) If B.M diagram consists of vertical line then a point BM is applied at that point.
(1) If B.M diagram consists of inclined line then the load will be free point load
(i) If B.M diagram consists of parabolic curve then the load will be U.D.L.
(iv) If B.M diagram consists of cubic curve then the load will be G.V.L.
(v) If B.M diagram consists of fourth degree polynomial then the load distribution is parabolic.

Let us take an example: Following is the S.F diagram of a beam is given. Find its loading diagram.

| |

(-) 6 kN

|

E! D

e 3m ——

Answer: From A-E inclined straight line so load will be UDL and in AB = 2 m length load = 6 kN if UDL is

w N/m then w.x=6 or wx2 =6 or w=3 kN/m after that S.F is constant so no force is there. At last a 6 kN

for vertical force complete the diagram then the load diagram will be

3 kN/m

—2 m—= Sm—-T

As there 1s no support at left end it must be a cantilever beam.
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: 3 kN/m

k2 m—k 3m

"

4.8 Point of Contraflexure

In a beam if the bending moment changes sign at a point, the point itself having zero bending moment, the
beam changes curvature at this point of zero bending moment and this point is called the point of contra
flexure.

Consider a loaded beam as shown below along with the B.M diagrams and deflection diagram.

wmﬂﬂﬂf_‘-l
LY 15
R Re
{+]

. B.M.Diagram
(=)

A, Ceflectsd shape of

e B the heam

In this diagram we noticed that for the beam loaded as in this case, the bending moment diagram is partly
positive and partly negative. In the deflected shape of the beam just below the bending moment diagram
shows that left hand side of the beam is ‘sagging’ while the right hand side of the beam is ‘hogging’.

The point C on the beam where the curvature changes from sagging to hogging is a point of contraflexure.

® There can be more than one point of contraflexure in a beam.

Example: The point of contraflexure is a point where [ISRO-2015]
(a) Shear force changes sign (b) Bending moment changes sign

(c) Bending moment is maximum (d) None of the above

Answer. (b)

4.9 General expression

e EI ‘;;V -

. EI ‘;;f =7,

. EI ‘;;V - M,

. %: 0 = slope

e y=0 = Deflection
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o Flexural rigidity = EI

OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 25-Years GATE Questions

Shear Force (S.F.) and Bending Moment (B M.)

GATE-1. A concentrated force, F is applied - >
(perpendicular to the plane of the figure) on

b I
the tip of the bent bar shown in Figure. The 7] I
equivalent load at a section close to the fixed
end is: i
(a) Force F
(b) Force F and bending moment FL
(¢) Force F and twisting moment FL l
(d) Force F bending moment F L, and twisting F®&

moment FL L >

[GATE-1999]

kT

GATE-2. The shear force in a beam subjected to pure positive bending is
(positive/zero/negative) [GATE-1995]

GATE-2(i) For the cantilever bracket, PQRS, loaded as shown in the adjoining figure(PQ = RS =
L, and QR = 2L), which of the following statements is FALSE? [CE: GATE-2011]

(a) The portion RS has a constant twisting moment with a value of 2WL

(b) The portion QR has a varying twisting moment with a maximum value of WL.
(¢) The portiona PQ has a varying bending moment with a maximum value of WL
(d) The portion PQ has no twisting moment

Cantilever

GATE-4. A beam is made up of two p
identical bars AB and BC, by
hinging them together at B. The l ~
end A is built-in (cantilevered) (
and the end C is simply-
supported. With the load P acting
as shown, the bending moment at
A is:

L

AW
©

[GATE-2005]
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(a) Z (b) L (c) SPL
a) Zero — c
2 2

(d) Indeterminate

Cantilever with Uniformly Distributed Load

GATE-5. The shapes of the bending moment diagram for a uniform cantilever beam carrying a
uniformly distributed load over its length is: [GATE-2001]
(a) A straight line (b) A hyperbola (c) An ellipse (d) A parabola

Cantilever Carrying load Whose Intensity varies

GATE-6. A cantilever beam carries the anti- Ws
symmetric load shown, where . is
the peak intensity of the
distributed load. Qualitatively, the

-«
[

A B
correct bending moment diagram (’q ~— |
for this beam is: e w

| W
L T SR
< > -

(a) (b)

(c) ' (d) ‘

Simply Supported Beam Carrying Concentrated Load

GATE-7. A concentrated load of P acts on a simply supported beam of span L at a distance —

from the left support. The bending moment at the point of application of the load is

given by [GATE-2003]
PL 2PL PL 2PL
(a)— (b)— (c)— (d)—
3 3 9 9
GATE-8. A simply supported beam carries a load 'P’ L a P
through a bracket, as shown in Figure. The * il
maximum bending moment in the beam is
(a) PI/2 (b) PI/2 + aP/2 ‘
(c) PI/2 + aP (d) PI/2 — aP T T
* 2L >

[GATE-2000, ISRO-2015]

Simply Supported Beam Carrying a Uniformly Distributed
Load

Statement for Linked Answer and Questions Q9-Q10:
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A mass less beam has a loading pattern as shown in the figure. The beam is of rectangular cross-

section with a width of 30 mm and height of 100 mm. [GATE-2010]
3000Nm™
A By v vy vy vy v C

2

2000 \|, 2000
|‘~. /i\

y

&
|
|

GATE-9. The maximum bending moment occurs at

(a) Location B (b) 2675 mm to the right of A
(c) 2500 mm to the right of A (d) 3225 mm to the right of A

GATE-10. The maximum magnitude of bending stress (in MPa) is given by [ISRO-2015]
(a) 60.0 (b) 67.5 (c) 200.0 (d) 225.0

Data for Q11-Q12 are given below. Solve the problems and choose correct
answers

A steel beam of breadth 120 mm and 120 KN/m
height 750 mm is loaded as shown in the
figure. Assume Esteer= 200 GPa. \ \ y
7 7
15m

[GATE-2004]
GATE-11. The beam is subjected to a maximum bending moment of
(a) 3375 kNm (b) 4750 kNm (c) 6750 kNm (d) 8750 kNm

GATE-12. The value of maximum deflection of the beam is:
(a) 93.75 mm (b) 83.75 mm (c) 73.75 mm (d) 63.75 mm

Statement for Linked Answer and Questions Q13-Q14:
A simply supported beam of span length 6m and 75mm diameter carries a uniformly distributed
load of 1.5 kN/m [GATE-2006]

GATE-13. What is the maximum value of bending moment?
(a) 9 kNm (b) 13.5 kNm (c) 81 kNm (d) 125 kNm

GATE-14. What is the maximum value of bending stress?
(a) 162.98 MPa (b) 325.95 MPa (c) 625.95 MPa (d) 651.90 MPa

GATE-15.A cantilever beam OP is connected to another beam PQ with a pin joint as shown in
the figure. A load of 10 kN is applied at the mid-point of PQ. The magnitude of

bending moment (in kNm) at fixed end O is [GATE-2015]
(a) 2.5 (b) 5 (c) 10 (d) 25
10kN
| o

20

1m

F—— Ow

L 2m
; 1
GATE-15a. A vertical load of 10 kN acts on a hinge located at a distance of L/4 from the roller
support Q of a beam of length L (see figure).
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3L/4

|
The vertical reaction at support Q is [CE: GATE-2018]
(a) 0.0 kN (b) 2.5 kN (c) 7.5 kN (d) 10.0 kN

Simply Supported Beam Carrying a Load whose Intensity
varies Uniformly from Zero at each End to w per Unit Run
at the MiD Span

GATE-16. A simply supported beam of length 'l' is subjected to a symmetrical uniformly varying
load with zero intensity at the ends and intensity w (load per unit length) at the mid

span. What is the maximum bending moment? [TAS-2004]
® 3wl? b) wi? ( )wl2 @ Swl?
a —_— c)—

8 12 24 12

GATE-16a.For the simply supported beam of length L, subjected toa wuniformly distributed
moment M kN-m per unit length as shown in the figure, the bending moment (in kN-
m) at the mid-span of the beam is [CE: GATE-2010]

M kN-m per unit length
A\ NI N N N N .

| < L >
(a) zero (b) M (¢) ML (d) %

GATE-16b. A simply supported beam of length L is subjected to a varying distributed load
sin(3rx/L) Nm, where the distance x is measured from the left support. The
magnitude of the vertical reaction force in N at the left support is [GATE-2013]
(a) zero (b) L/3n (c) Lin (d) 2L/%

GATE-16¢c. For a loaded cantilever beam of uniform cross-section, the bending moment (in
N.mm) along thelength is M (x) = 5x2+10x, where x is the distance (in mm) measured
from the free end of thebeam. The magnitude of shear force (in N) in the cross-section
at x =10 mm is . [GATE-2017]

GATE-17. List-I shows different loads acting on a beam and List-II shows different bending
moment distributions. Match the load with the corresponding bending moment

diagram.

List-I List-IT [CE: GATE-2003]
A. 1.

2 1
B. 2
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11—

5.
Codes
A B C D A B C D
(@ 4 2 1 3 (b) 5 4 1 3
© 2 5 1 (d) 2 4 1 3
GATE-18. The bending moment diagram for a beam is given below: [CE: GATE-2005]
b 200 kN-m
a |
|
100 kN-m I
| I
| I
I ' 1 b/
N '
[e—>le—>le Pl¢ >
0.5m 0.5m 1m 1m
The shear force at sections aa’ and bb’ respectively are of the magnitude.
(a) 100 kN, 150 kN (b) zero, 100 kN
(c) zero, 50 kN (d) 100 kN, 100 kN

GATE-19. A simply supported beam AB has the bending moment diagram as shown in the
following figure: [CE: GATE-2006]

D

M M

[— L—|t— L—>j— . —]

The beam is possibly under the action of following loads
(a) Couples of M at C and 2M at D (b) Couples of 2M at C and M at D

(¢) Concentrated loads of % at C and % at D

(d) Concentrated loads of % at C and couple of 2M at D

GATE-20. A simply-supported beam of length 3L is subjected to the loading shown in the figure.
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P P
5 \ L E

‘ A W ‘
] ]

Y e = [GATE-2016]

It is given that P =1 N, L = 1 m and Young’s modulus E = 200 GPa. The cross-section is a square
with dimension 10 mm X 10 mm. The bending stress (in Pa) at the point A located at the top surface
of the beam at a distance of 1.5 L from the left end is

(Indicate compressive stress by a negative sign and tensile stress by a positive sign.)

GATE-21. Match List-I (Shear Force Diagrams) beams with List-II (Diagrams of beams with
supports and loading) and select the correct answer by using the codes given below

the lists: [CE: GATE-2009]
List-1 List-II
1
A. g/unit length g/unit length
OO, la'a'a"a

AN AN
";I\ N - L ppe—— L —ple— L

A T

qu\ = Lole—— L —le L ]

g/unit length

A A

= L dfe—— L —ie L ]
4.

o[

[SJS

S o
IS
+
o [
we—|
+
[CIES]

P
P

— 1% - L le—— L —ple L
Codes:
A B C D A B C D
(@ 3 1 2 4 (b) 3 4 2 1
) 2 1 4 3 (d) 2 4 3 1

GATE-22. For the overhanging beam shown in figure, the magnitude of maximum bending
moment (in kN-m) is [GATE-2015]
10k /m : 20kMN
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Previous 25-Years IES Questions

Shear Force (S.F.) and Bending Moment (B.M.)
[TES-1998]
IES-1. A beam subjected to a load P is shown in ta— L/ 2—wtm— L /2~
the given figure. The bending moment at A A
the support AA of the beam will be 4 $
(a) PL (b) PL/2 : L/2
(c) 2PL (d) zero
2 4
[TES-1997]
IES-3. The bending moment (M) is constant over a length segment (I) of a beam. The
shearing force will also be constant over this length and is given by [IES-1996]
(a) M/1 (b) M/21 (c) M/41 (d) None of the above
IES-4. A rectangular section beam subjected to a bending moment M varying along its
length is required to develop same maximum bending stress at any cross-section. If
the depth of the section is constant, then its width will vary as [TIES-1995]
(a) M ) VM (c) M2 (d) /M
IES-5. Consider the following statements: [IES-1995]
If at a section distant from one of the ends of the beam, M represents the bending
moment. V the shear force and w the intensity of loading, then
1.dM/dx =V 2.dVidx =w
3. dw/dx =y (the deflection of the beam at the section)
Select the correct answer using the codes given below:
(@) 1and 3 (b) 1and 2 (c)2and 3 (d1,2and 3
IES-5a  Shear force and
bending moment 200 N
diagrams for a beam A B C D
ABCD are shown in 300 N
figure. It can Dbe
concluded that 10 m=>]<€ 25 m
(a) The beam has Ié él >I
three supports
(b) End A i1s fixed
(¢) A couple of 2000 3000 Nm 3000 Nm
Nm acts at C
(d A uniformly
distributed load v 1000 Nm
is confined to B C D
portion BC only 10 m=>}€=10 m —>le— 15 m—>]
[TES-2010]
Cantilever
IES-6. The given figure shows a beam BC simply supported at C and hinged at B (free end)

of a cantilever AB. The beam and the cantilever carry forces of

200 kg 100 kg
4 |
A 1 8 l ¢
s . \
Hr—— 1M e 1N e I 1M
100 kg and 200 kg respectively. The bending moment at B is: [TES-1995]
(a) Zero (b) 100 kg-m (c) 150 kg-m (d) 200 kg-m
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IES-7. Match List-I with List-II and select the correct answer using the codes given below
the lists: [TES-1993, 2011]
List-I List-IT
(Condition of beam) (Bending moment diagram)
A.  Subjected to bending moment at the 1. Triangle
end of a cantilever
B. Cantilever carrying uniformly distributed 2. Cubic parabola
load over the whole length
C. Cantilever carrying linearly varying load 3. Parabola

from zero at the fixed end to maximum at
the support

D. A beam having load at the centre and 4. Rectangle
supported at the ends
Codes: A B C D A B C D
(a) 4 1 2 3 (b) 4 3 2 1
¢ 3 4 2 1 (d) 3 4 1 2
IES-8. If the shear force acting at every section of a beam is of the same magnitude and of
the same direction then it represents a [TES-1996]

(a) Simply supported beam with a concentrated load at the centre.
(b) Overhung beam having equal overhang at both supports and carrying equal concentrated
loads acting in the same direction at the free ends.
(c) Cantilever subjected to concentrated load at the free end.
(d) Simply supported beam having concentrated loads of equal magnitude and in the same
direction acting at equal distances from the supports.
IES-8a. Which of the following statements is/are correct?
1. In uniformly distributed load, the nature of shear force is linear and bending moment
is parabolic.
2. In uniformly varying load, the nature of shear force is linear and bending moment is
parabolic.
3. Under no loading condition, the nature of shear force is linear and bending moment
is constant.

Select the correct answer using the code given below. [IES-2019 Pre.]
(a) 1and 2 (b) 1 and 3
(c) 2 only (d) 1 only

Cantilever with Uniformly Distributed Load

IES-9. A uniformly distributed load @ (in kN/m) is acting over the entire length of a 3 m long
cantilever beam. If the shear force at the midpoint of cantilever is 6 kN, what is the
value of o ? [TES-2009]

(a) 2 (b) 3 (c) 4 d) 5

IES-10. Match List-I with List-II and select the correct answer using the code given below the
Lists: [IES-2009]
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List-T List-I
(Cantilever (Shear Force
Loading) Diagram)
P, Py A B ¢

=
ES
+1]
3]

Lve)
£
]
R
=
o
n
dm
0

o 0
:n.. Y
o )
= u
0%y o%y
S w
b b=
{lm Hw
L8] 0

=
o
0

@

Code: A B C D A B C D
(@ 1 5 2 4 ®) 4 5 2 3
© 1 3 4 5 @ 4 2 5 3

C

IES-11. The shearing force diagram for a
beam is shown in the above figure.
The bending moment diagram is
represented by which one of the
following?

P

B
[TES-2008]

B

w
]
o)

(a) (b)

o
>

0
A

~—
Le]
S’

(d)

oe]

C

IES-12. A cantilever beam having 5 m length is so loaded that it develops a shearing force of
20T and a bending moment of 20 T-m at a section 2m from the free end. Maximum
shearing force and maximum bending moment developed in the beam under this load
are respectively 50 T and 125 T-m. The load on the beam is: [TES-1995]

(a) 25T concentrated load at free end

(b) 20T concentrated load at free end

(¢) 5T concentrated load at free end and 2 T/m load over entire length
(d) 10 T/m udl over entire length
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Cantilever Carrying Uniformly Distributed Load for a Part
of its Length

IES-13. A vertical hanging bar of length LL and weighing w N/ unit length carries a load W at
the bottom. The tensile force in the bar at a distance Y from the support will be given
by [TES-1992]

(a)Wwl (b)) +w(l—y) ©(W+w)y/L  (d) W+%(L—y)

Cantilever Carrying load Whose Intensity varies

IES-14. A cantilever beam of 2m length supports a triangularly distributed load over its
entire length, the maximum of which is at the free end. The total load is 37.5 kN.What
is the bending moment at the fixed end? [IES 2007]
(a) 50x108 Nmm  (b) 12.5X 108 N mm (c) 100 X106 N mm (d) 25% 106 N mm

Simply Supported Beam Carrying Concentrated Load

IES-15. Assertion (A): If the bending moment along the length of a beam is constant, then the

beam cross section will not experience any shear stress. [TES-1998]
Reason (R): The shear force acting on the beam will be zero everywhere along the
length.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R 1s NOTthe correct explanation of A
(¢) Aistrue but R is false

(d) Aisfalse but R is true

IES-16. Assertion (A): If the bending moment diagram is a rectangle, it indicates that the
beam is loaded by a uniformly distributed moment all along the length.
Reason (R): The BMD is a representation of internal forces in the beam and not the
moment applied on the beam. [TES-2002]
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOTthe correct explanation of A
(¢) Aistrue but R is false
(d) Aisfalse but R is true

IES-17. The maximum bending moment in a simply supported beam of length L loaded by a

concentrated load W at the midpoint is given by [TES-1996]

(a) WL (b) WL (c) WL (d) WL

a — c) — —

2 4 8

IES-18. A simply supported beam is W 2w W

loaded as shown in the above ‘

figure. The maximum shear force ¢

in the beam will be 1

(a) Zero by W

(c) 2W (d) 4W -——C—-+-I—C—|+|-—C—+—(‘j—h

[TES-1998]

IES-19. If a beam is subjected to a constant bending moment along its length, then the shear

force will [TES-1997]

(a) Also have a constant value everywhere along its length

(b) Be zero at all sections along the beam

(c) Be maximum at the centre and zero at the ends (d) zero at the centre and maximum at
the ends
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IES-20.

IES-20(3).

IES-21.

TES-21(i).

IES-22.

Bending Moment and Shear Force Diagram S K Mondal’s
A loaded beam is shown in W W
the figure. The bending
moment diagram of the re— | —»

beam is best represented as:

[ [
f‘-‘L . B 2L . L—-{

[TES-2000]

) (b) W

\//\\/ ? L ey
A beam ABCD 6 m long is supported at B and C, 3 m apart with overhangs AB =2 m
and CD = 1 m. It carries a uniformly distributed load of 100 KN/m over its entire

length: [IES-2015]
~100 kN/m

£ B 0
ATAAS BT A AIATATATA ATA RS

N ;‘-\\';.'i‘-—-\'d" ‘ YX._A__L._J_ A_.A_J_.TJ_A_I._‘
&2 n‘.—‘—ﬂ&m 3 m - 1lm &
The maximum magnitudes of bending moment and shear force are

(a) 200 KN-m and 250 KN (b) 200 KN-m and 200KN
(c) 50 KN-m and 200 KN (d) 50 KN-m and 250 KN

A simply supported beam has equal over-hanging lengths and carries equal
concentrated loads P at ends. Bending moment over the length between the supports

[IES-2003]
(a) Is zero (b) Is a non-zero constant
(c) Varies uniformly from one support to the other (d) Is maximum at mid-span
A beam simply supported at equal distance from the ends carries equal loads at each

end. Which of the following statements is true? [TES-2013]
(a) The bending moment is minimum at the mid-span

(b) The bending moment is minimum at the support

(¢) The bending moment varies gradually between the supports

(d) The bending moment is uniform between the supports

The bending moment diagram for the case shown below will be q as shown in
1\# W
A
B

(€Y /_—\ (b) //l _ [\

(© /\ (d)

[TES-1992]
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IES-23. Which one of the following W w
portions of the loaded beam
shown in the given figure is -— | —ta o - [ —=
subjected to pure bending? A » E
(a) AB (b)DE T B C D T
(c) AE (d) BD +-—]—
[TES-1999]
TES-24. Constant bending moment over span "I" will occur in [TES-1995]
| i
 N—— ——3
{a) (b)
w w W
| | |
R — ) N——
{c} {d)
IES-25. For the beam shown in the above pP P
figure, the elastic curve between the
supports B and C will be:
(a) Circular (b) Parabolic
(c) Elliptic (d) A straight line &’_ B 5 : C
a ) e O "4
«11'/ /11{ A |
[TES-1998]

IES-26. A beam is simply supported at its ends and is loaded by a couple at its mid-span as
shown in figure A. Shear force diagram for the beam is given by the figure.

[TES-1994]
I |
‘B \

(A) (8)

I [\
L] 1 [ ]

(C) () (E)
(@) B M) C ©D @ E

IES-27. A beam AB is hinged-supported at its ends and is loaded by couple P.c. as shown in
the given figure. The magnitude or shearing force at a section x of the beam is:

[TES-1993]
P
!
Fil C B
= i . =
. ' : |
| i i
s L |
: | |
e L L ———
(@0 (b) P (c) P/2L (d) P.c./2L

IES-27a.Which one of the following is the correct bending moment diagram for a beam which
is hinged at the ends and is subjected to a clockwise couple acting at the mid-span?

[IES-2018]
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Positive BM Negative BM

(c) &\} (d) bﬂ

Simply Supported Beam Carrying a Uniformly Distributed
Load

IES-28. A freely supported beam at its ends carries a central concentrated load, and maximumbending
moment is M. If the same load be uniformly distributed over the beam length,then what is the
maximum bending moment? [TES-2009]

M M
(@M (b) EY © EY (d) 2M

Simply Supported Beam Carrying a Load who’s Intensity
varies uniformly from Zero at each End to w per
Unit Run at the MiD Span

IES-29. A simply supported beam is
subjected to a distributed W N/m
loading as shown in the
diagram given below:
What is the maximum shear
force in the beam?

(a) WL/3 (b) WL/2 ”47%1_ ’%’
K__

(c) 2WL/3 (d) WL/4

L —)
[IES-2004]

Simply Supported Beam carrying a Load who’s Intensity
varies

IES-30. A beam having uniform cross-section carries a uniformly distributed load of intensity
q per unit length over its entire span, and its mid-span deflection is &.

The value of mid-span deflection of the same beam when the same load is distributed

with intensity varying from 2q unit length at one end to zero at the other end is:
[TES-1995]

(a) 1/3 6 (b) 1/2 6 (c) 2/36 (d) 6

Simply Supported Beam with Equal Overhangs and
carrying a Uniformly Distributed Load

TES-31. A beam, built-in at both ends, carries a uniformly distributed load over its entire
span as shown in figure-I. Which one of the diagrams given below, represents
bending moment distribution along the length of the beam?

[TES-1996]
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udl

_21 L

(a)

The Points of Contraflexure

TES-32. The point: of contraflexure is a point where: [TES-2005]
(a) Shear force changes sign (b) Bending moment changes sign
(c) Shear force is maximum (d) Bending moment is maximum

IES-33. Match List I with List II and select the correct answer using the codes given below

the Lists: [IES-2000]

List-I List-I1

A. Bending moment is constant 1. Point of contraflexure

B. Bending moment is maximum or minimum 2. Shear force changes sign

C. Bending moment is zero 3. Slope of shear force diagram is
zero over the portion of the beam

D. Loading is constant 4. Shear force is zero over the

portion of the beam

Code: A B C D A B C D
(@) 4 1 2 3 ® 3 2 1 4
© 4 2 1 3 @ 3 1 2 4

Loading and B.M. diagram from S.F. Diagram

IES-34. The bending moment diagram shown in Fig. I correspond to the shear force diagram
in [IES-1999]

I

@ — ;[ | e Lff..rf’ e =

IES-35. Bending moment distribution in a built beam is shown in the given

C
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(a) (h)

(c)

IES-36.

IES-37.

IES-38.

IES-38a.

IES-39.

Bending Moment and Shear Force Diagram S K Mondal’s
The shear force distribution in the beam is represented by [TES-2001]

A < E A &

A\‘ \ £ N A\\/ ;

c

The given figure shows the
shear force diagram for the
beam ABCD.

A B C D

Bending moment in the portion
BC of the beam

[TES-1996]

(a) Is a non-zero constant (b) Is zero
(c) Varies linearly from B to C (d) Varies parabolically from B to C

Figure shown above represents the

BM diagram for a simply supported

beam. The beam is subjected to

which one of the following?

(a) A concentrated load at its mid-
length

(b) A uniformly distributed load over
its length

(¢) A couple at its mid-length

(d) Couple at 1/4 of the span from each
end W

[TES-2006]

If the bending moment diagram for
a simply supported beam is of the l\

form given below.

’.I‘hen the load acting on the beam A ‘—\\ JC B
is:
ﬁ-‘-\"-\,k

(a) A concentrated force at C

(b) A uniformly distributed load over
the whole length of the beam

(¢ Equal and opposite moments B.M. Diagram
applied at A and B

(d) A moment applied at C [IES-1994]

A lever is supported on two 2 kN
hinges at A and C. It carries a

force of 3 kN as shown in the

above figure. The bending I'm
moment at B will be

(a) 3 kN-m () 2 kN-m A l B E -

bt m—sfe—1 m—sfa—1 m ]

() 1 kN-m (d) Zero

The figure given below shows a bending moment diagram for the beam CABD:
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. IIJIZIU//.ff_/J//IIIJII/111'//111;

C A B (b}
Load diagram for the above beam will be: [IES-1993]

(@) l

c A : ‘ ig D

—
by — —
| T —

@ I ]
C

(c)

p 1

(d)

:

O g
S

Fx T

IES-40. The shear force diagram shown in the following figure is that of a [IES-1994]
(a)  Freely supported beam with symmetrical point load about mid-span.
(b) Freely supported beam with symmetrical uniformly distributed load about mid-span
(c) Simply supported beam with positive and negative point loads symmetrical about the mid-

span

(d) Simply supported beam with symmetrical varying load about mid-span
—*% —~
7

[ =L

IES-40(i). A part of shear force diagram of the beam is shown in the figure

14/N
~ 3m ‘ ‘ ‘
I ‘ ‘ ’B  Tm €
If the bending moment at B is -9kN, then bending moment at C is [IES-2014]
(a) 40kN (b) 58kN (c) 116kN (d) -80kN

Statically Indeterminate beam

IES-41 Which one of the following is NOT a statically indeterminate structure?
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Shear

Bending Moment and Shear Force Diagram S K Mondal’s
P
. !
/ C A B
(@) -A—: p————- — = e e e -=B ®) y C T

Steel g

Aliminium

©

(CY)

LXXXRXXXXN

Previous 25-Years IAS Questions

Force (S.F.) and Bending Moment (B.M.)

IAS-1. Assertion (A): A beam subjected only to end moments will be free from shearing force.
[IAS-2004]
Reason (R): The bending moment variation along the beam length is zero.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R 1s NOTthe correct explanation of A
(¢) Aistrue but R is false
(d) Aisfalse but R is true
TAS-2. Assertion (A): The change in bending moment between two cross-sections of a beam is
equal to the area of the shearing force diagram between the two sections.[IAS-1998]
Reason (R): The change in the shearing force between two cross-sections of beam due
to distributed loading is equal to the area of the load intensity diagram between the
two sections.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOTthe correct explanation of A
(¢) Aistrue but R is false
(d) Aisfalse but R is true
IAS-3. The ratio of the area under the bending moment diagram to the flexural rigidity
between any two points along a beam gives the change in [TAS-1998]
(a) Deflection (b) Slope (c¢) Shear force (d) Bending moment
Cantilever
TAS-4. A beam AB of length 2 L having a P
concentrated load P at its mid-span
is hinge supported at its two ends A l
and B on two identical cantilevers as q I B [~
shown in the given figure. The 2 N
correct value of bending moment at %@%ﬁ
Ais
(a) Zero (b) PLI2
(c) PL (d) 2 PL [TAS-1995]
TAS-5. A load perpendicular to the plane of the handle is applied at the free end as shown in

the given figure. The values of Shear Forces (S.F.), Bending Moment (B.M.) and
torque at the fixed end of the handle have been determined respectively as 400 N, 340
Nm and 100 by a student. Among these values, those of [IAS-1999]
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(a) S.F., B.M. and torque are correct
(b) S.F. and B.M. are correct
(c) B.M. and torque are correct
(d) S.F. and torque are correct

400N

o/
/{

Cantilever with Uniformly Distributed Load

IAS-6. If the SF diagram for a beam is a triangle with length of the beam as its base, the
beam is: [IAS-2007]
(a) A cantilever with a concentrated load at its free end
(b) A cantilever with udl over its whole span
(¢)  Simply supported with a concentrated load at its mid-point
(d) Simply supported with a udl over its whole span

TIAS-7. A cantilever carrying a uniformly distributed load is shown in Fig. I.

Select the correct B.M. diagram of the cantilever. [IAS-1999]

G T A e Sl s A et IRt ¥ L. s i Y B
ﬁ Figure - 1
e S
(a)
i @

TIAS-8. A structural member ABCD is loaded jA B

as shown in the given figure. The +

shearing force at any section on the ;] a

length BC of the member is: D & C

(a) Zero o) P n

(c) Pa/k (d) Pk/a :" —™

P
[IAS-1996]
Cantilever Carrying load Whose Intensity varies
IAS-9. The beam is loaded as shown in Fig. I. Select the correct B.M. diagram
[IAS-1999]
Mﬁ
A 1B AC
¥ ! +
(a) ®) T LT

4

(d)

5
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Simply Supported Beam Carrying Concentrated Load

IAS-10.

IAS-11.

TIAS-12.

Assertion (A): In a simply supported beam carrying a concentrated load at mid-span,
both the shear force and bending moment diagrams are triangular in nature without
any change in sign. [IAS-1999]
Reason (R): When the shear force at any section of a beam is either zero or changes
sign, the bending moment at that section is maximum.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOTthe correct explanation of A

(¢) Aistrue but R is false

(d) Aisfalse but R is true

For the shear force to be uniform throughout the span of a simply supported beam, it

should carry which one of the following loadings? [TAS-2007]

(a) A concentrated load at mid-span

(b) Udl over the entire span

(¢) A couple anywhere within its span

(d) Two concentrated loads equal in magnitude and placed at equal distance from each
support

Which one of the following figures represents the correct shear force diagram for the
loaded beam shown in the given figure I? [IAS-1998; IAS-1995]

W W

A Iil ifi D

& 3

4—L—>|<7 E',L;)‘*—L—l:

@]
: _—

®) |

Simply Supported Beam Carrying a Uniformly Distributed

Load

IAS-13.

For a simply supported beam of length fl' subjected to downward load of uniform
intensity w, match List-I with List-II and select the correct answer using the codes

given below the Lists: [IAS-1997]
List-I List-IT
, 5wt
A.  Slope of shear force diagram
384E 1

B. Maximum shear force 2. w

. . wi
C. Maximum deflection 3. ?
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Bending Moment and Shear Force Diagram S K Mondal’s
wi
D. Magnitude of maximum bending moment 4. 7
Codes: A B C D A B C D
(a 1 2 3 4 (b) 3 1 2 4
0 3 2 1 4 (d) 2 4 1 3

Simply Supported Beam Carrying a Load whose Intensity
varies Uniformly from Zero at each End to w per Unit Run
at the MiD Span

IAS-14.

A simply supported beam of length 'l' is subjected to a symmetrical uniformly varying
load with zero intensity at the ends and intensity w (load per unit length) at the mid

span. What is the maximum bending moment? [TAS-2004]
® 3wl? b) wi? ()wl2 @ Swl?
a —_— c)——

8 12 24 12

Simply Supported Beam carrying a Load whose Intensity

varies

IAS-15.

A simply supported beam of span 1 is subjected to a uniformly varying load having
zero intensity at the left support and w N/m at the right support. The reaction at the

right support is: [TAS-2003]
( )wl ) wl ( )wl @ wl
a)— — c)— —

2 5 4 3

Simply Supported Beam with Equal Overhangs and
carrying a Uniformly Distributed Load

IAS-16.

IAS-17.

Consider the following statements for a simply supported beam subjected to a couple

at its mid-span: [TAS-2004]
1. Bending moment is zero at the ends and maximum at the centre

2. Bending moment is constant over the entire length of the beam

3. Shear force is constant over the entire length of the beam

4. Shear force is zero over the entire length of the beam

Which of the statements given above are correct?

(a) 1,3 and 4 (b) 2,3 and 4 (¢) 1 and 3 (d) 2 and 4

Match List-I (Beams) with List-Il (Shear force diagrams) and select the correct
answer using the codes given below the Lists: [IAS-2001]
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Bending Moment and Shear Force Diagram S K Mondal’s
ListI List I

A P Q k 5 T : P Q R -] T
! !

& \I; Q E g ) 2 P Q E 5 T
J

C. P Q g T P Q R & T

)
o
o
e
ta
-
- :
i:‘
o
e
=

]
=]
=]

= ]
Codes A B C D A B C D
@ 4 2 5 3 ®» 1 4 5 3
© 1 4 3 5 @ 4 2 3 5

The Points of Contraflexure

IAS-18.

IAS-19.

A point, along the length of a beam subjected to loads, where bending moment
changes its sign, is known as the point of [TAS-1996]
(a) Inflexion (b) Maximum stress (c¢) Zero shear force (d) Contra flexure

Assertion (A): In a loaded beam, if the shear force diagram is a straight line parallel
to the beam axis, then the bending moment is a straight line inclined to the beam
axis. [TAS 1994]
Reason (R): When shear force at any section of a beam is zero or changes sign, the
bending moment at that section is maximum.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOTthe correct explanation of A

(¢) Aistrue but R is false

(d) Aisfalse but R is true

Loading and B.M. diagram from S.F. Diagram

IAS-20.

IAS-21.

The shear force diagram of a 14N

loaded beam is shown in the
following figure: 2 kN
The maximum Bending Moment of =3
the beam is: - m——»e—Im—»
(a) 16 kN-m () 11 kN-m A C B

28 kN- d) 8 kN- ~
(¢) 28 ko (8 IN-m BETRY ey

-19 kN
[TAS-1997]

The bending moment for a loaded beam is shown below: [IAS-2003]
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SN

The loading on the beam is represented by which one of the followings diagrams?

(a) (b)
i B
( (d)

c)
T i
IAS-22. Which one of the given bending moment diagrams correctly represents that of the
loaded beam shown in figure? [TAS-1997]

@ () © @
TAS-23. The shear force diagram is shown
+ | above for a loaded beam. The
a0 J corresponding bending moment

2 diagram is represented by

[TIAS-2003]
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TAS-24.

(d)

-+

NV v

+

+ \
A\
(c) \§/ \/ (d) w \/
The bending moment diagram for a simply supported beam is a rectangle over a
larger portion of the span except near the supports. What type of load does the beam

carry? [TAS-2007]
(@) A uniformly distributed symmetrical load over a larger portion of the span except near the
supports

(b) A concentrated load at mid-span

(¢) Two identical concentrated loads equidistant from the supports and close to mid-point of
the beam

Two identical concentrated loads equidistant from the mid-span and close to supports
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OBJECTIVE ANSWERS

GATE-1. Ans. (¢)
GATE-2. Ans. Zero
GATE-2(i).Ans. (b)
GATE-4. Ans. (b)
GATE-5. Ans. (d)

X
W=
=

X
Parabola o> o

GATE-6. Ans. (c)

M2W
(EEEREE R
M _owx? o owx®
2 6L

FI
PX(LJX(ZLJ j—— 3 —hl«—b —»
Pab 3)°\3) opL
T L 9 T C T

GATE-8. Ans. (b)

GATE-9. Ans. (¢)
3000 N/m

V
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Chapter-4 Bending Moment and Shear Force Diagram S K Mondal’s
R,+R, =3000x2 = 6000N

R,x4-3000x2x1=0

R, = 1500,

S.F. eq". at any section x from end A.

R, - 3000x(x-2)=0 {for  x>2m}
X =25m.

GATE-10. Ans. (b)
Binding stress will be maximum at the outer surface
So taking y = 50 mm

3
and[z% & a:mdeSO
14,
2

m, :1.5x103[2000+x]—%

" My, =3.375%10° N — mm

o _3.375><106 x50x%x12
- 30x100°

WP 120x15?

8 8

=67.5MPa

GATE-11. Ans. ()M = kNm = 3375kNm

. ph* 0.12x(0.75)’ y

GATE-12. Ans. (a) Moment of inertia (I) = TS = 1 =4.22x10"m
_5w'_ 5 120x10°x15°

™ 384 EI 384 200x10°x4.22x10°°

_wl?  1.5x6°
8 8

_32M  32x6.75x10°

GATE-14. Ans. (a) 6 = "= - ~Pa=162.98MPa
zd®  7x(0.075)

m=93.75mm

GATE-13. Ans. (a) M,

=6.75kNm But not in choice. Nearest choice (a)

GATE-15. Ans. (c)

4 pﬁi]‘:
9 * }
100
SkN 5kN
1 I SkN
" m »l

M=5x2=10KN
GATE-15a. Ans. (a) In the simply supported part no force et all.
GATE-16. Ans. (b)
GATE-16a. Ans. (a)

Let the reaction at the right hand support be V, upwards. Taking moments about left hand
support, we get
VpxL-ML=0
= V=M
Thus, the reaction at the left hand support V; will be M downwards.

.. Moment at the mid-span

=—MX£+MX£=0
2 2
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Chapter-4 Bending Moment and Shear Force Diagram S K Mondal’s
Infact the bending moment through out the beam is zero.
GATE-16b.Ans. (b)
GATE-16¢. Ans. 110 Range (110 to 110)
GATE-17. Ans. (d)
GATE-18. Ans. (¢)
The bending moment to the left as well as right of section aa'is constant which means shear

dM,
dx

=V,=10x+10 =10x10+10=110

force is zero at aa'.

Shear force at bd' =L;100 =50kN

GATE-19. Ans. (a)
The shear force diagram is

C D
A [ 1 B
| ]
M - M
L . p L
I SFD 1
1 1
1 1
1 1
2M
1 M 1
] L}
)
1 1
1 1
Ra Loading diagram Ry
sM M
R TR

GATE-20. Ans. 0 (Zero)
It is a case of BM at the mid span of a simply supported beam, at this point BM changes sign so
value is zero.

GATE-21. Ans. (a)

GATE-22. Ans.40 kNm

IES

PL 14
IES-1. Ans.(b) Load P at end produces moment — in SA
2 T P
anticlockwise direction. Load P at end
produces moment of PL in clockwise Pl pL P
direction. Net moment at AA is PL/2. "3 L Pxl
-

IES-3. Ans. (d) Dimensional analysis gives choice (d)
3

IES-4. Ans. (a)¥ —const. and I= %

IES-5. Ans. (b)

IES-5a  Ans. (¢) A vertical increase in BM diagram entails there is a point moment similarly a vertical

increase in SF diagram entails there is a point shear force.

IES-6. Ans. (a)

IES-7. Ans. (b)

IES-8. Ans. (¢)

IES-8a. Ans. (d)
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Chapter-4 Bending Moment and Shear Force Diagram S K Mondal’s

- 4V -w (load)
dx

The value of the distributed load at any point in the beam is equal to the slope of the shear force curve.

o dM, -
dx

The value of the shear force at any point in the beam is equal to the slope of the bending moment curve.

————— 3n

Sy = >

IES-9. Ans. (¢)

Shear force at mid point of cantilever

2
= (DX3:6
2
- 0=2"2_4kN/m

IES-10. Ans. (b)
IES-11. Ans. (b) Uniformly distributed load on cantilever beam.

X
-— X w / length
/ ¥
annmn:m.f
- l —-
x

A5F |
e
y
; /’ *”Z [)
s 1 BM -le,z
-
U
IES-12. Ans. (d)
IES-13. Ans. (b)
IES-14. Ans. (a)
e 2m »|
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Chapter-4 Bending Moment and Shear Force Diagram S K Mondal’s
4
M =37.5% E KNm =50%x106 Nmm

IES-15. Ans. (a)
IES-16. Ans. (d)
IES-17. Ans. (¢)
IES-18. Ans. (¢)
IES-19. Ans. (b)
IES-20. Ans. (a)
IES-20(i).Ans. b
IES-21. Ans. (b)

]
////>///

ff."l'l-"f
/// (—)
ffffff

IES-21(i). Ans. (d)

IES-22. Ans. (a)

IES-23. Ans. (d) Pure bending takes place in the section between two weights W

IES-24. Ans. (d)

IES-25. Ans. (a)

IES-26. Ans. (d)

IES-27. Ans. (d) If F be the shearing force at section x (at point A), then taking moments about B, F x 2L =
Pc

Pc . .
or F=— Thus shearing force in zone x = —

2L
M
A (T .
o

IES-27a.Ans. (c)

Ry = MIL i
LI2

IES-28. Ans. (b)

For-2020 (IES,GATE, PSUs) Page 209 of 493 Rev.0



Chapter-4 Bending Moment and Shear Force Diagram S K Mondal’s
L

W @ T e w
e e *ﬂ?

WL
B'MMaX == T - M
Where the Load 1s U.D.L.

Maximum Bending Moment

(2]

Wt u
B B 2

8 2\ 4
1ES-29. Ans. (d) Total load = L x W = Wk
2 2
2
w4 s WL T, | W, x|- WL _Wx
4 2L 4 L
2
WL/ WL
Smax atx=0 — T

IES-30. Ans. (d)

IES-31. Ans. (d)

IES-32. Ans. (b)

IES-33. Ans. (b)

IES-34. Ans. (b) If shear force is zero, B.M. will also be zero. If shear force varies linearly with length, B.M.
diagram will be curved line.

IES-35. Ans. (a)

IES-36. Ans. (a)

IES-37. Ans. (¢)

IES-38. Ans. (d) A vertical line in centre of B.M. diagram is possible when a moment is applied there.

IES-38a. Ans. (d) At the mid point BM is zero and changes its sign.

T~

A ‘M‘""m_xu J B

B.M. Diagram

IES-39. Ans. (a) Load diagram at (a) is correct because B.M. diagram between A and B is parabola which is
possible with uniformly distributed load in this region.
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Chapter-4 Bending Moment and Shear Force Diagram S K Mondal’s

IES-40. Ans. (b) The shear force diagram is possible on simply supported beam with symmetrical varying
load about mid span.

IES-40(i) Ans. (a)

IES-41 Ans. (¢)

1AS

IAS-1. Ans. (a)

IAS-2. Ans. (b)

IAS-3. Ans. (b)

IAS-4. Ans. (a)Because of hinge support between beam AB and cantilevers, the bending moment can't be
transmitted to cantilever. Thus bending moment at points A and B is zero.

IAS-5. Ans. (d)

SF =400N and BM=400x(0.4+0.2)=240Nm

Torque =400x0.25 =100Nm
IAS-6. Ans. (b)

“wrali&
30
20 ------- ——
104 E
o ; PoL o
2
IAS-7. Ans. (¢) M, = —wx x = = - X
2 2
;I. X
¥ i Vo VsVt i Vi
] !
v O
IAS-8. Ans. (a)
IAS-9. Ans. (d)
IAS-10. Ans. (d) A is false.
¥ -

o
[ =]
“
o
[ ] .

5FD

(+) ?N

BMD
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Chapter-4 Bending Moment and Shear Force Diagram S K Mondal’s
IAS-11. Ans. (c¢)
IAS-12. Ans. (a)
IAS-13. Ans. (d)

IAS-14. Ans. (b)
IAS-15. Ans. (d)
IAS-16. Ans. (¢)

l — Lxe—
.~
<::¢ X 10N
———— 1m

G 10N

SFD

+

BMD

IAS-17. Ans. (d)
IAS-18. Ans. (d)
IAS-19. Ans. (b)
IAS-20. Ans. (a)

IAS-21. Ans. (d)
IAS-22. Ans. (c) Bending moment does not depends on moment of inertia.
IAS-23. Ans. (a)
IAS-24. Ans. (d)
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Chapter-4 Bending Moment and Shear Force Diagram S K Mondal’s
Previous Conventional Questions with Answers

Conventional Question IES-2005

Question: A simply supported beam of length 10 m carries a uniformly varying load whose
intensity varies from a maximum value of 5 kN/m at both ends to zero at the centre
of the beam. It is desired to replace the beam with another simply supported beam
which will be subjected to the same maximum 'bending moment’ and ‘shear force' as
in the case of the previous one. Determine the length and rate of loading for the
second beam if it is subjected to a uniformly distributed load over its whole length.
Draw the variation of 'SF' and 'BM' in both the cases.

Answer:

X
5KN/m ; 5KN/m

R

Total load on beam =5><%: 25kN

SRy =Ry = %: 12.5kN

Take a section X-X from B at a distance x.

For 0 < x <5m we get rate of loading

w =a+ bx [as lineary varying]

at x=0, w=5kN/m

and atx=5,w=0

These two bounday condition givesa=5and b = -1
Sw=5—x

We know that shear force(V), Z—V =—w
X

2

X
orV=f—mdx:ff(57x)dx:75x+3+c1
at x=0,F=125kN (R;)soc,=12.5

2

V= 5y + X?+12.5

It is clear that maximum S.F = 12.5 kN

For a beam ﬂ =V
dx

2 2 3
or, M =Ide:f(—5x+%+12.5)dx = -5%+%+12.5x+c2

atx=0,M=0givesC, =0
M=125x-25x>+x%/6
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Chapter-4 Bending Moment and Shear Force Diagram S K Mondal’s

for Maximum bending moment at (l_M =0
X

X2
or-5x+?+12.5 =0
or,x? —=10x+25=0
or,x =5 means at centre.
So, M, =12.5x2.5 —2.5%x5%4+5%/6=20.83 kNm

¢ UWKNm

SR |

A

X
Now we consider a simply supported beam carrying uniform distributed load
over whole length (w KN/m).
WL
2

S.F.at section X-X

Here R, = R;

V,=+——wx
V,.x =12.5kN

B.M at section X-X
we  Wx?

M =+—x—
x 2 2

aM, WL w [L]Z wL?

=20.83 ————(ii)

dx 2 2 |2) 8

Solving(i) & (ii) we get L=6.666m and w=3.75kN/m

wiunit length
J AALALEERAA ERERLRIRELE
.y
W-
v, : wiunit leng :
WL/ : £
i (N : :
- t > X
S.F. Dlagliun _ ) WLf
My / \
X
B.IN Diagram
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Chapter-4 Bending Moment and Shear Force Diagram S K Mondal’s
Conventional Question IES-1996
Question: A Uniform beam of length L is carrying a uniformly distributed load w per unit
length and is simply supported at its ends. What would be the maximum bending
moment and where does it occur?
Answer: By symmetry each support

we

reactionis equal i.e. RA=Rp=

B.M at the section x-x is

we o Wx*
Mi=t+—x—
2 2

For the B.M to be maximum we

Parabalic
curve

X

have to =0 that gives.

/1;!/11/}//1-

we . :
—wx=0 Bending Moment Diagram
+

or x=% i.e. at mid point.

wi?
8

g 2

2

wl oy w B
Andeax— 2 XA——X —+

2

Conventional Question AMIE-1996
Question: Calculate the reactions at A and D for the beam shown in figure. Draw the bending
moment and shear force diagrams showing all important values.

4 kN 0.5m

1 kN/m

A B {lc D F,/r"“"
" 30°
o
|_ Zm + 2m + 2m+1m_|

Answer: Equivalent figure below shows an overhanging beam ABCDF supported by a roller support at
A and a hinged support at D. In the figure, a load of 4 kN is applied through a bracket 0.5 m
away from the point C. Now apply equal and opposite load of 4 kN at C. This will be

equivalent to a anticlockwise couple of the value of (4 x 0.5) = 2 kNm acting at C together with
a vertical downward load of 4 kN at C. Show U.D.L. (1 kN/m) over the port AB, a point load of

2 kN vertically downward at F, and a horizontal load of 2\/§ kN as shown.

For-2020 (IES,GATE, PSUs) Page 215 of 493 Rev.0



Chapter-4

Bending Moment and Shear Force Diagram

3 kN J kN
VLSS
l’
"+ A
# A
/J‘IIIIJ'IIj
FA A A A A A e A A 4 s 77
s
- A
ELLA':
2kN 2kN
J kN :
S.F. diagram
4 kNm 6 kNm
2:5kNm 4 kNm

2 kNm

B.M. diagram

For reaction and A and D.
Let ue assume Ra= reaction at roller A.
Rpv vertically component of the reaction at the hinged support D, and

Rpr horizontal component of the reaction at the hinged support D.
Obviously Rpu= 2\/§ kN (—>)
In order to determine Ra, takings moments about D, we get
2
Ra ><6+2><1=1><2><(§+2+2j+2+4><2

or R, =3kN
Also R, +R,, =(1x2)+4+2=8

or R,y =5kNvetrically upward

~Reaction at D, Ry = (R, )+ (Ro)” =15 +(243) =6.08kN

Inclination with horizontal= 6 = tan™ o 55.3°

23

S.F.Calculation:

Ve =-2kN

V, =-2+5=3kN

V. =3-4=-%kN

V; =—1kN

V, =—1-(1x2) =-3kN
B.M.Calculation:

M- =0

M, =-2x1=-2kNm

M =[-2(1+2)+5x2]+2=6kNm

For-2020 (IES,GATE, PSUs) Page 216 of 493

S K Mondal’s

Rev.0



Chapter-4 Bending Moment and Shear Force Diagram S K Mondal’s
The bending moment increases from 4kNm in (i, e.,—2(1 +2) +5x 2)

to 6kNm as shown

My =-2(1+2+2)+5(+2) - 4x2+2=4kNm

M, =—2(1-%—2+2+%j+5(2+2+1)—4(2+1)+2—1x1x%
=2.5kNm

M, =0

Conventional Question GATE-1997
Question: Construct the bending moment and shearing force diagrams for the beam shown in

the figure.
20 kN/m 50 kN 40 kN

Answer:

e
e
#

i o i o IJJ.‘J_.!/

b
[
"y
-

T
LR LLLLL,

B
o
x
=

;

---3
8
5

- e e mm omr omm o o ogm ww e oEs Es EE s o

»
i)

9
g
3

- e e we am el e o omm o e

£67.5 kNm
' B.M Diagram

Calculation: First find out reaction at B and E.
Taking moments, about B, we get
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REx4.5+20x0.5x%+100=50><3+4O><5

or Rg =55kN

Also, R; +R: =20x0.5+50 + 40
or Ry =45kN [ R = 55kN]
S.F. Calculation: V. =—-40kN

V; =-40+55=15kN
V, =15-50=-35kN
V, =-35+45=10kN
B.M. Calculation: M; =0
M: =0
Mz =-40x0.5=-20kNm
Mp =—-40x2+55%x1.5=2.5kNm
M. =-40x4+55%x3.5-50x2=-67.5kNm
The bending moment increases from — 62.5kNm to 100.

M; =-20x0.5 XO?S =—-2.5kNm
Conventional Question GATE-1996
Question: Two bars AB and BC are connected by a frictionless hinge at B. The assembly is
supported and loaded as shown in figure below. Draw the shear force and bending

moment diagrams for the combined beam AC. clearly labelling the important
values. Also indicate your sign convention.

100kN 100 kN

Ao )| oo

0)

‘1.5m+ 2m |1m‘ 1m|

Answer: There shall be a vertical reaction at hinge B and we can split the problem in two parts. Then
the FBD of each part is shown below

AEENNNNRARNRNN

100 kN 100 kN
- 2m—+—1 rn-+—1 m-»
i 2 B[S c
15m T I I
i i
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125 kN

+

25 kN

Frrrrrr

::::::E\ Frrrrrrir’r
o -

. Gt - o

o -

75 kN 75 kN
S. F. Diagram

A B

E—

112.5 kNm

Calculation: Referring the FBD, we get,
Fy =0, and R,+R, =200kN
From ZMB:0,100><2+100><3—RZ><4=0

or R, =¥=125KN

o R, =200-125=75kN
Again, R, =R, =75kN
and M=75x1.5=112.5kNm.

Conventional Question IES-1998

Question: A tube 40 mm outside diameter; 5 mm thick and 1.5 m long simply supported at 125
mm from each end carries a concentrated load of 1 kN at each extreme end.

(i) Neglecting the weight of the tube, sketch the shearing force and bending
moment diagrams;

(ii) Calculate the radius of curvature and deflection at mid-span. Take the modulus
of elasticity of the material as 208 GN/m?2

Answer: (i) Given, d) =40mm=0.04m; d, =d, -2t =40-2x5=30mm=0.03m;
W =1kN; E = 208GN/m? =208 x10°N/m?; 1=1.5; a=125mm=0.125m
w w

| |
L T

- /
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w

|
FEFFNY.

S.F. diagram w

Wa . Wa
B.M. diagram
Calculation:
(ii) Radius of coordinate R
As per bending equation:

M_o_E
I v R

El
or R=— ———i

5 ()
Here,M=W xa=1x10%x0.125 =125Nm
(4 4
|_6—4(c|0 —df)
-z
64
Substituting the values in equation (i), we get

8 8
R=208X10 x8.59x10 _142.9m
125

Deflection at mid — span:
d’y
EIF=MX =-Wx+W(x-a)=-Wx+Wx-Wa=-Wa
X
Integrating, we get

[(0.04)" ~(0.03)" | -8.59x10*m*

Eld—y =-Wax +C,

dx
When, x=1,d—y=0
2 dx
0=—Wa%+C1 or C, =?
Eld—y =-Wax + Wal
dx
Integrating again, we get
x*  Wal

Ely=-Wa—+—x+C
y 2 2 2
When x=a,y=0
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3 2
Oz_Wa +WaI+C2
2 2
3 2
or C2=Wa _Wal
2 2
Wax? Walx | Wa® wa?l
Ely =- + + -
2 2 2 2
Wal| x> Ix a* al
or Yy=— |t =t ———
El 2 2 2 2

At mid — span,i,e., x=1/2

Wa[_(l/Z)2 Ix(1/2) a? al}

Y=7F 2 2

_I_
2 2 2 2
AR S

El| 8 2 2
__1x1000x0.125 [1.5° 0.125° 0.125x15
208x10° x8.59x10°| 8 2 2

=0.001366m =1.366mm

It will be in upward direction

Conventional Question IES-2001
Question: What is meant by point of contraflexure or point of inflexion in a beam? Show the

same for the beam given below:

17.5kN/m [ZOkN
A c
B D
] 4M ! 4M L 2n_)
Answer: In a beam if the bending moment changes sign at a point, the point itself having zero bending

moment, the beam changes curvature at this point of zero bending moment and this point is
called the point of contra flexure.

17.5kN/m [ZOkN
A/W\/’\/\ c B D

BMD

From the bending moment diagram we have seen that it is between A & C.
[If marks are more we should calculate exact point.]
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D. Deflection of Beam

Theory at a Glance (for IES, GATE, PSU)

5.1 Introduction

® We know that the axis of a beam deflects from its initial position under action of applied forces.

® In this chapter we will learn how to determine the elastic deflections of a beam.
Selection of co-ordinate axes

We will not introduce any other co-ordinate system.

We use general co-ordinate axis as shown in the Y

figure. This system will be followed in deflection of

beam and in shear force and bending moment

diagram. Here downward direction will be negative

i.e. negative Y-axis. Therefore downward deflection of » X

the beam will be treated as negative. We use above Co-ordinate system

To determine the value of deflection of beam
subjected to a given loading where we will use the
2

formula, Eld—}zl =M, .
dx

Some books fix a co-ordinate axis as shown in the

following figure. Here downward direction will be = X
positive 1.e. positive Y-axis. Therefore downward

deflection of the beam will be treated as positive. As

beam is generally deflected in downward directions

and this co-ordinate system treats downward vy

deflection is positive deflection. Some books use above co-ordinate system

To determine the value of deflection of beam

subjected to a given loading where we will use the

2

d
formula, El d—{ =-M,.
X
Why to calculate the deflections?
® To prevent cracking of attached brittle materials
® To make sure the structure not deflect severely and to “appear” safe for its occupants
® To help analyzing statically indeterminate structures

® Information on deformation characteristics of members is essential in the study of vibrations of
machines
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Chapter-5 Deflection of Beam S K Mondal’s
Several methods to compute deflections in beam

e Double integration method (without the use of singularity functions)
o Macaulay’s Method (with the use of singularity functions)

e Moment area method

o Method of superposition

e Conjugate beam method

e C(Castigliano’s theorem

e  Work/Energy methods

Each of these methods has particular advantages or disadvantages.

deflection

{ Methods to find }

A A\ 4
( Double integration > C Geometrical > (Energy Method)
Moment area Con]ugate
method beam method
Castlglian’s
theorem

Assumptions in Simple Bending Theory

o Beams are initially straight

e The material is homogenous and isotropic i.e. it has a uniform composition and its mechanical
properties are the same in all directions

o The stress-strain relationship is linear and elastic

e  Young’s Modulus is the same in tension as in compression

e Sections are symmetrical about the plane of bending

e Sections which are plane before bending remain plane after bending

Non-Uniform Bending
e In the case of non-uniform bending of a beam, where bending moment varies from section to section,
there will be shear force at each cross section which will induce shearing stresses
o Also these shearing stresses cause warping (or out-of plane distortion) of the cross section so that

plane cross sections do not remain plane even after bending

5.2 Elastic line or Elastic curve
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Chapter-5 Deflection of Beam

We have to remember that the differential equation of the elastic line is

_Mx

Proof: Consider the following simply supported beam with UDL over its length.

Y

Elastic line

Elastic line

From elementary calculus we know that curvature of a line (at point Q in figure)
d’y

~o2
% . dxt where R =radius of curvature

()]

For small deflection, g_y ~0

2

Q.
<

2

1
or —=
R X

o
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Chapter-5 Deflection of Beam S K Mondal’s

Bending stress of the beam (at point Q)
— _(Mx )y

* I
From strain relation we get
L and ¢, = I
R y E

1_M,
R El
2
Therefore d—)zl _M,
dx El

2

or £l 3Y _m

dx? X

5.3 General expression

2

From the equation E/ d { =M _we may easily find out the following relations.
X
d'y
EI o =—w Shear force density (Load)
x
3
. Eld )3/ =V_  Shear force
dx |
d’y
e EI—-=M_ Bending moment
dx |
d
o Y_p- slope
dx

e y= ¢ = Deflection, Displacement
o Flexural rigidity = E/

5.4 Double integration method (without the use of singularity functions)

o V= I —odx

o M= [Vdx
2

. 0oy
dx ’

1
. 0=Slope:E'[dex

e O = Deflection :J. Odx

4-step procedure to solve deflection of beam problems by double integration method

Step 1: Write down boundary conditions (Slope boundary conditions and displacement boundary

conditions), analyze the problem to be solved

dZ
Step 2: Write governing equations for, £/ 7 J; =M,
X
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Step 3: Solve governing equations by integration, results in expression with unknown integration constants
Step 4: Apply boundary conditions (determine integration constants)

Following table gives boundary conditions for different types of support.

Types of support and Boundary Conditions Figure

Y

Clamped or Built in support or Fixed end :
( Point A)

Deﬂection,(y) =0

Slope,(@) =0

Moment,(M)#0 ie.Afinite value

Free end: (Point B)

Deflection,(y)#0 i.e Afinite value
Slope,(6)#0 i.e.Afinite value
Moment, (M) =0

Roller (Point B) or Pinned Support (Point A) or
Hinged or Simply supported.

Deﬂection,(y) =0
Slope,(0)#0 ie.Afinite value
Moment, (M) =0

End restrained against rotation but free to
deflection

Deflection,(y)#0 ie.Afinite value
Slope, (9) =0
Shear force,(V) =0

FIexibIg support . . K., =—— Raotational spring
Deflection,(y)#0 ie.Afinite value d
Slope,(6) %0 i.e Afinitevalue D/ 5 M=K, d_Y
x
dy

Moment,(M )=k — o

( ) ' dx ,rr""'f" v KY
Shear force,(V)=k.y Linear spring
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Using double integration method we will find the

deflection and slope of the following loaded beams
one by one.

(1) A Cantilever beam with point load at the free end.

(11) A Cantilever beam with UDL (uniformly distributed load)

(i11) A Cantilever beam with an applied moment at free end.

(iv) A simply supported beam with a point load at its midpoint.

(v) A simply supported beam with a point load NOT at its midpoint.

(vi) A simply supported beam with UDL (Uniformly distributed load)

(vii) A simply supported beam with triangular distributed load (GVL) gradually varied load.
(viil) A simply supported beam with a moment at mid span.

(ix) A simply supported beam with a continuously distributed load the intensity of which at any
. X
point X’ along the beam is W, = W SIN T

(i) A Cantilever beam with point load at the free end.
We will solve this problem by double integration method. For that at first we have to calculate (Mx).

Consider any section XX at a distance ‘X’ from free end which is left end as shown in figure.

Y

- L -
" Mx =- PX
We know that differential equation of elastic line
2
Bl 9Y o m, = Px
dx

Integrating both side we get

jElj%’:—ijdx
2

o Bl Yo p XA Q)
dx 2
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Again integrating both side we get

EIIdy=J(PX—22+AJ dx

Px?

or Ely=- +Ax+B . (i)
Where A and B is integration constants.

Now apply boundary condition at fixed end which is at a distance x = L from free end and we also know that
at fixed end

at x=L, y=0

at x=1L, ﬂ =0
dx
. .. PL®
from equation (ii) EIL = - ?+ AL+B ... (iii)
. . PL? .
from equation (i) EI.(0) = - 7 +A Ll @av)

2 3
Solving (ii1) & (iv) we get A = %and B=- ﬂ
Px® . PLU’x PL
6El 2ElI 3El

The slope as well as the deflection would be maximum at free end hence putting x = 0 we get

Therefore, y=-

3
ymax = -——— (Negative sign indicates the deflection is downward)

3El

Pl
2EI

Remember for a cantilever beam with a point load at free end.

_PU
3E|

(Slope)max = O max =

Downward deflection at free end, 5

_PL°

And slope at free end, ( 9) —_—
2El
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(ii) A Cantilever beam with UDL (uniformly distributed load)

We will now solve this problem by double integration method, for that at first we have to calculate (Mx).

Consider any section XX at a distance ‘X’ from free end which is left end as shown in figure.

2
X WX
M, =—(wx).==—
2 2
We know that differential equation of elastic line
dy  wx?
dx® 2

Integrating both sides we get
2 2
[ gy [-*2-dx
dx 2
dy  wx®
dx 6
Again integrating both side we get

or EI

3

Eljdy:j(—wg +A]dx

or Ely= V;);

[where A and B are integration constants]

Now apply boundary condition at fixed end which is at a distance x = LL from free end and we also know that
at fixed end.

at x=L, y=0

d
at x =1, —y= 0
dx
w3 +wl 3
from equation (1) we get EIx(0) = wl +AorA= wl
4
from equation (i1) we get ElLy=- ﬁ +AL+B
4
or B=- wl
8

The slope as well as the deflection would be maximum at the free end hence putting x = 0, we get
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4
Viax = —\g—llgl [Negative sign indicates the deflection is downward|
wlL®
slope) = =0, ., =—=
( P )max max 6EI

Remember: For a cantilever beam with UDL over its whole length,

_wL
SEl

Maximum deflection at free end 5

~wl

Maximum slope, (9) — ﬁ

(iii) A Cantilever beam of length ‘L’ with an applied moment ‘M’ at free end.

Consider a section XX at a distance %’ from free end, the bending moment at section XX is
(Mx) = -M

We know that differential equation of elastic line

d’y

or ElI—5=-M
ax

Integrating both side we get
d’y
or Eljwz—J'M dx

or Elﬂ =-Mx+A ...(i)
dx
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Again integrating both side we get
Elfdy = [(Mx +A)dx

Mx?

or Ely=- >

+Ax+B ..(ii)
Where A and B are integration constants.
applying boundary conditions in equation (i) &(ii)
at x=1, d—y:o gives A=ML

dx

2 2

2 2

Therefore deflection equation is y = - Mx”  MLx ML
2E| El  2EI

Which is the equation of elastic curve.

ML
2E|

M
El

Let us take a funny example: A cantilever beam AB of length ‘I’ and uniform flexural rigidity EI has a

..Maximum deflection at free end 5

(It is downward)

-.Maximum slope at free end (9)

bracket BA (attached to its free end. A vertical downward force P is applied to free end C of the bracket.

Find the ratio a/L required in order that the deflection of point A is zero. [ISRO - 2008, GATE-2014]
| L B
ARE
C
2
{ a
Vp
We may consider this force ‘P’ and a moment (P.a) act on free end A of the cantilever beam.
M=P.a I L B
A
Vo
_ PL®

Due to point load ‘P’ at free end ‘A’ downward deflection (5 ) = ﬁ
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2 2
Due to moment M = P.a at free end ‘A’ upward deflection (5 ) = I\ZME_I = (PZ.TE)IL
For zero deflection of free end A
F’_L3 _ (F’.a)L2
3El 2El
a 2
or—=—
L 3

(iv) A simply supported beam with a point load P at its midpoint.

A simply supported beam AB carries a concentrated load P at its midpoint as shown in the figure.

.
| -]
B - 2 |

We want to locate the point of maximum deflection on the elastic curve and find its value.

In the region 0 <x <L/2

Bending moment at any point x (According to the shown co-ordinate system)

(2

and In the region L/2 <x <L
P
My = E(X -L/ 2)

We know that differential equation of elastic line

2
E j—zzg.x (In the region 0 < x < L/2)
X

Integrating both side we get
d’y P
or El jd7 = IEX dx

2
or E1 Y _P X A
dx 2 2

Again integrating both side we get

El [dy = j(;xz +A]dx
3

orEly= F;);

+ Ax + B (ii)

[Where A and B are integrating constants]
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Now applying boundary conditions to equation (i) and (ii) we get

at x=0, vy=0
at x=1/2, j—y:O

X
2
=- P—L andB=0
16
3 12
.. Equation of elastic line, y = PL-PL X
12 16

_ PL’
48El|

~PL°
16El

Maximum deflection at mid span (x = L/2)

and maximum slope at each end (9)

(v) A simply supported beam with a point load ‘P’ NOT at its midpoint.

A simply supported beam AB carries a concentrated load P as shown in the figure.

y

- L -

We have to locate the point of maximum deflection on the elastic curve and find the value of this deflection.

Taking co-ordinate axes x and y as shown below
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y

A X
Elastic line
+ 12 r—!: 1.2 -
For the bending moment we have
In the region 0<x < a, M, = (?}X
: P.a
And, In the region a<x < L, M, = —T(L - X)
So we obtain two differential equation for the elastic curve.
2
Eld—z/:E.x for 0<x < a
dx L
2
and Eld—¥=—E.(L-x) for a<x < L
dx
Successive integration of these equations gives
2
El d_yZE-x_+A1 ...... (i) for o<x<a
dx L 2
B Y pax-P2a L (ii) fora<x<L
dx L
3
Ely =%.%+A1X+B1 ...... (i) for 0<x<a
Ely—pa X P2 X A B (iv) fora<x<lL
y=Pa— - oA, g e <x<
Where A1, Az, B1, Baare constants of Integration.
Now we have to use Boundary conditions for finding constants:
BCS (a) at x=0,y=0
Mb)atx=L,y=0
dy . ..
(c) at x = a, d_ = Same for equation (1) & (i1)
X
(d) at x = a, y = same from equation (iii) & (iv)
_ Pb 2 2\. B Pa 2 2
Weget A, —a(L -b%); A, _E(ZL +a’)
and B, =0; B, =Pa® / 6El
Therefore we get two equations of elastic curve
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E|y=-%(ﬁ—b2—x2) ..... (v) for 0<x<a
Ely= %K%)(x-af#(ﬁ —bz)x-x‘*} ) for a<x<L

For a > b, the maximum deflection will occur in the left portion of the span, to which equation (v) applies.
Setting the derivative of this expression equal to zero gives

X=\/a(a+2b) _\/(L-b)(L+b) [z
3

3 3
at that point a horizontal tangent and hence the point of maximum deflection substituting this value of x

B P.b(L2 _bZ )3/2
" 943.EIL

into equation (v), we find, y
Case -I: if a =b = L/2 then

12 - (L/2)° L

Maximum deflection will be at x =

l.e. at mid point
2 3/2
P.(L2)x L - (L2} ps
9V3EIL ~ 48EI

andy, ., = (5) =

(vi) A simply supported beam with UDL (Uniformly distributed load)
A simply supported beam AB carries a uniformly distributed load (UDL) of intensity w/unit length over its

whole span L as shown in figure. We want to develop the equation of the elastic curve and find the

maximum deflection & at the middle of the span.

Taking co-ordinate axes x and y as shown, we have for the bending moment at any point x

2
MX :W_L_X - WX_
2 2

Then the